As artificial intelligence and machine learning are becoming present in almost every aspect of life, it’s essential to understand how they work and their common applications. Although machine learning has been around for a while, many still portray it as an enemy. Machine learning can be your friend, but only if you learn to “tame” it.


Regression stands out as one of the most popular machine-learning techniques. It serves as a bridge that connects the past to the present and future. It does so by picking up on different “events” from the past and breaking them apart to analyze them. Based on this analysis, regression can make conclusions about the future and help many plan the next move.


The weather forecast is a basic example. With the regression technique, it’s possible to travel back in time to view average temperatures, humidity, and other variables relevant to the results. Then, you “return” to present and tailor predictions about the weather in the future.


There are different types of regression, and each has unique applications, advantages, and drawbacks. This article will analyze these types.


Linear Regression


Linear regression in machine learning is one of the most common techniques. This simple algorithm got its name because of what it does. It digs deep into the relationship between independent and dependent variables. Based on the findings, linear regression makes predictions about the future.


There are two distinguishable types of linear regression:


  • Simple linear regression – There’s only one input variable.
  • Multiple linear regression – There are several input variables.

Linear regression has proven useful in various spheres. Its most popular applications are:


  • Predicting salaries
  • Analyzing trends
  • Forecasting traffic ETAs
  • Predicting real estate prices

Polynomial Regression


At its core, polynomial regression functions just like linear regression, with one crucial difference – the former works with non-linear datasets.


When there’s a non-linear relationship between variables, you can’t do much with linear regression. In such cases, you send polynomial regression to the rescue. You do this by adding polynomial features to linear regression. Then, you analyze these features using a linear model to get relevant results.


Here’s a real-life example in action. Polynomial regression can analyze the spread rate of infectious diseases, including COVID-19.


Ridge Regression


Ridge regression is a type of linear regression. What’s the difference between the two? You use ridge regression when there’s high colinearity between independent variables. In such cases, you have to add bias to ensure precise long-term results.


This type of regression is also called L2 regularization because it makes the model less complex. As such, ridge regression is suitable for solving problems with more parameters than samples. Due to its characteristics, this regression has an honorary spot in medicine. It’s used to analyze patients’ clinical measures and the presence of specific antigens. Based on the results, the regression establishes trends.


LASSO Regression


No, LASSO regression doesn’t have anything to do with cowboys and catching cattle (although that would be interesting). LASSO is actually an acronym for Least Absolute Shrinkage and Selection Operator.


Like ridge regression, this one also belongs to regularization techniques. What does it regulate? It reduces a model’s complexity by eliminating parameters that aren’t relevant, thus concentrating the selection and guaranteeing better results.


Many choose ridge regression when analyzing a model with numerous true coefficients. When there are only a few of them, use LASSO. Therefore, their applications are similar; the real difference lies in the number of available coefficients.



Elastic Net Regression


Ridge regression is good for analyzing problems involving more parameters than samples. However, it’s not perfect; this regression type doesn’t promise to eliminate irrelevant coefficients from the equation, thus affecting the results’ reliability.


On the other hand, LASSO regression eliminates irrelevant parameters, but it sometimes focuses on far too few samples for high-dimensional data.


As you can see, both regressions are flawed in a way. Elastic net regression is the combination of the best characteristics of these regression techniques. The first phase is finding ridge coefficients, while the second phase involves a LASSO-like shrinkage of these coefficients to get the best results.


Support Vector Regression


Support vector machine (SVM) belongs to supervised learning algorithms and has two important uses:


  • Regression
  • Classification problems

Let’s try to draw a mental picture of how SVM works. Suppose you have two classes of items (let’s call them red circles and green triangles). Red circles are on the left, while green triangles are on the right. You can separate these two classes by drawing a line between them.


Things get a bit more complicated if you have red circles in the middle and green triangles wrapped around them. In that case, you can’t draw a line to separate the classes. But you can add new dimensions to the mix and create a circle (rectangle, square, or a different shape encompassing just the red circles).


This is what SVM does. It creates a hyperplane and analyzes classes depending on where they belong.


There are a few parameters you need to understand to grasp the reach of SVM fully:


  • Kernel – When you can’t find a hyperplane in a dimension, you move to a higher dimension, which is often challenging to navigate. A kernel is like a navigator that helps you find the hyperplane without plummeting computational costs.
  • Hyperplane – This is what separates two classes in SVM.
  • Decision boundary – Think of this as a line that helps you “decide” the placement of positive and negative examples.

Support vector regression takes a similar approach. It also creates a hyperplane to analyze classes but doesn’t classify them depending on where they belong. Instead, it tries to find a hyperplane that contains a maximum number of data points. At the same time, support vector regression tries to lower the risk of prediction errors.


SVM has various applications. It can be used in finance, bioinformatics, engineering, HR, healthcare, image processing, and other branches.


Decision Tree Regression


This type of supervised learning algorithm can solve both regression and classification issues and work with categorical and numerical datasets.


As its name indicates, decision tree regression deconstructs problems by creating a tree-like structure. In this tree, every node is a test for an attribute, every branch is the result of a test, and every leaf is the final result (decision).


The starting point of (the root) of every tree regression is the parent node. This node splits into two child nodes (data subsets), which are then further divided, thus becoming “parents” to their “children,” and so on.


You can compare a decision tree to a regular tree. If you take care of it and prune the unnecessary branches (those with irrelevant features), you’ll grow a healthy tree (a tree with concise and relevant results).


Due to its versatility and digestibility, decision tree regression can be used in various fields, from finance and healthcare to marketing and education. It offers a unique approach to decision-making by breaking down complex datasets into easy-to-grasp categories.


Random Forest Regression


Random forest regression is essentially decision tree regression but on a much bigger scale. In this case, you have multiple decision trees, each predicting a certain output. Random forest regression analyzes the outputs of every decision tree to come up with the final result.


Keep in mind that the decision trees used in random forest regression are completely independent; there’s no interaction between them until their outputs are analyzed.


Random forest regression is an ensemble learning technique, meaning it combines the results (predictions) of several machine learning algorithms to create one final prediction.


Like decision tree regression, this one can be used in numerous industries.



The Importance of Regression in Machine Learning Is Immeasurable


Regression in machine learning is like a high-tech detective. It travels back in time, identifies valuable clues, and analyzes them thoroughly. Then, it uses the results to predict outcomes with high accuracy and precision. As such, regression found its way to all niches.


You can use it in sales to analyze the customers’ behavior and anticipate their future interests. You can also apply it in finance, whether to discover trends in prices or analyze the stock market. Regression is also used in education, the tech industry, weather forecasting, and many other spheres.


Every regression technique can be valuable, but only if you know how to use it to your advantage. Think of your scenario (variables you want to analyze) and find the best actor (regression technique) who can breathe new life into it.

Related posts

Peace FM Online: OPIT Launches Groundbreaking AI Copilot To Transform Online Learning For African Students
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Jul 7, 2025 4 min read

Source:


OPIT – Open Institute of Technology, an innovative global online university, has announced the launch of OPIT AI Copilot, an advanced artificial intelligence assistant designed to revolutionize digital learning. This groundbreaking development is expected to significantly enhance access and support for its current and future students from across Africa.

With over 350 students from 80+ countries – including a growing number from Nigeria, Ghana, and Kenya – OPIT’s new AI Copilot provides a real-time, personalized educational experience that adapts to each student’s learning journey. It is one of the first European institutions to introduce such a deeply integrated AI system into its learning platform.

The AI Copilot has been meticulously trained on over 3,500 hours of OPIT course video content, 131 courses, and 320 assessments developed over the past three years. Thanks to this rich archive, it can offer highly contextual guidance, link directly to relevant sources, and adjust its support based on a student’s progress in their course modules.

“This is a game-changer for working professionals and students across Africa who are balancing education with careers and family responsibilities,” said Riccardo Ocleppo, Founder and Director of OPIT. “It provides flexible, 24/7 access to mentorship and course support, helping our students overcome barriers of distance, time zones, and academic complexity.”

The AI Copilot goes beyond student assistance. During examinations, it automatically shifts into “anti-cheating mode”, restricting direct answers and acting as a basic research tool, ensuring academic integrity while still encouraging self-driven learning. For faculty at OPIT, the AI Copilot provides tools to automate grading, generate learning materials, and offer feedback rubrics that can reduce assessment time by up to 30%, allowing more time for personalized instruction and curriculum design.

Unveiled at the “AI Agents and the Future of Higher Education” event hosted by Microsoft in Milan, the launch brought together top minds from global academic institutions, including IE University, the Royal College of Art, and others. The event highlighted the transformative potential of AI in education, not as a shortcut but as a pedagogical shift.

“AI is now the environment in which we learn. But it brings cultural and ethical responsibilities,” said Professor Francesco Profumo, Rector of OPIT and former Italian Minister of Education. “We must build responsible bridges between human and artificial intelligence.”

With mobile-first transactions, communications, and learning on the rise across Africa, OPIT has also confirmed the upcoming launch of a mobile app this autumn. The app will allow students to download exercises, summaries, and concept maps, making high-quality, AI-enhanced education more accessible to learners across the continent, even for those with limited connectivity.

Open Institute of Technology (OPIT) is an accredited global online university offering Bachelor’s and Master’s degrees in software engineering, AI, data science, and digital innovation. Committed to accessible and career-relevant education, OPIT is building a future-ready academic model powered by technology and global inclusion.

Read the full article below:

Read the article
B&FT Online: OPIT unveils AI Copilot to transform online learning for African students
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Jul 4, 2025 4 min read

Source:


Open Institute of Technology (OPIT), an innovative global online university, has announced the launch of OPIT AI Copilot, an advanced artificial intelligence assistant designed to revolutionize digital learning.

This groundbreaking development is expected to significantly enhance access and support for its current and future students from across Africa.

With over 350 students from 80+ countries – including a growing number from Nigeria, Ghana, and Kenya – OPIT’s new AI Copilot provides a real-time, personalized educational experience that adapts to each student’s learning journey. It is one of the first European institutions to introduce such a deeply integrated AI system into its learning platform.

The AI Copilot has been meticulously trained on over 3,500 hours of OPIT course video content, 131 courses, and 320 assessments developed over the past three years. Thanks to this rich archive, it can offer highly contextual guidance, link directly to relevant sources, and adjust its support based on a student’s progress in their course modules.

“This is a game-changer for working professionals and students across Africa who are balancing education with careers and family responsibilities,” said Riccardo Ocleppo, Founder and Director of OPIT. “It provides flexible, 24/7 access to mentorship and course support, helping our students overcome barriers of distance, time zones, and academic complexity.”

The AI Copilot goes beyond student assistance. During examinations, it automatically shifts into “anti-cheating mode”, restricting direct answers and acting as a basic research tool, ensuring academic integrity while still encouraging self-driven learning.

For faculty at OPIT, the AI Copilot provides tools to automate grading, generate learning materials, and offer feedback rubrics that can reduce assessment time by up to 30 percent, allowing more time for personalized instruction and curriculum design.

Unveiled at the ‘AI Agents and the Future of Higher Education’ event hosted by Microsoft in Milan, the launch brought together top minds from global academic institutions, including IE University, the Royal College of Art, and others. The event highlighted the transformative potential of AI in education, not as a shortcut but as a pedagogical shift.

“AI is now the environment in which we learn. But it brings cultural and ethical responsibilities,” said Professor Francesco Profumo, Rector of OPIT and former Italian Minister of Education. “We must build responsible bridges between human and artificial intelligence.”

With mobile-first transactions, communications, and learning on the rise across Africa, OPIT has also confirmed the upcoming launch of a mobile app this autumn. The app will allow students to download exercises, summaries, and concept maps, making high-quality, AI-enhanced education more accessible to learners across the continent, even for those with limited connectivity.

Open Institute of Technology (OPIT) is an accredited global online university offering Bachelor’s and Master’s degrees in software engineering, AI, data science, and digital innovation. Committed to accessible and career-relevant education, OPIT is building a future-ready academic model powered by technology and global inclusion.

Read the full article below:

Read the article