As artificial intelligence and machine learning are becoming present in almost every aspect of life, it’s essential to understand how they work and their common applications. Although machine learning has been around for a while, many still portray it as an enemy. Machine learning can be your friend, but only if you learn to “tame” it.
Regression stands out as one of the most popular machine-learning techniques. It serves as a bridge that connects the past to the present and future. It does so by picking up on different “events” from the past and breaking them apart to analyze them. Based on this analysis, regression can make conclusions about the future and help many plan the next move.
The weather forecast is a basic example. With the regression technique, it’s possible to travel back in time to view average temperatures, humidity, and other variables relevant to the results. Then, you “return” to present and tailor predictions about the weather in the future.
There are different types of regression, and each has unique applications, advantages, and drawbacks. This article will analyze these types.
Linear Regression
Linear regression in machine learning is one of the most common techniques. This simple algorithm got its name because of what it does. It digs deep into the relationship between independent and dependent variables. Based on the findings, linear regression makes predictions about the future.
There are two distinguishable types of linear regression:
- Simple linear regression – There’s only one input variable.
- Multiple linear regression – There are several input variables.
Linear regression has proven useful in various spheres. Its most popular applications are:
- Predicting salaries
- Analyzing trends
- Forecasting traffic ETAs
- Predicting real estate prices
Polynomial Regression
At its core, polynomial regression functions just like linear regression, with one crucial difference – the former works with non-linear datasets.
When there’s a non-linear relationship between variables, you can’t do much with linear regression. In such cases, you send polynomial regression to the rescue. You do this by adding polynomial features to linear regression. Then, you analyze these features using a linear model to get relevant results.
Here’s a real-life example in action. Polynomial regression can analyze the spread rate of infectious diseases, including COVID-19.
Ridge Regression
Ridge regression is a type of linear regression. What’s the difference between the two? You use ridge regression when there’s high colinearity between independent variables. In such cases, you have to add bias to ensure precise long-term results.
This type of regression is also called L2 regularization because it makes the model less complex. As such, ridge regression is suitable for solving problems with more parameters than samples. Due to its characteristics, this regression has an honorary spot in medicine. It’s used to analyze patients’ clinical measures and the presence of specific antigens. Based on the results, the regression establishes trends.
LASSO Regression
No, LASSO regression doesn’t have anything to do with cowboys and catching cattle (although that would be interesting). LASSO is actually an acronym for Least Absolute Shrinkage and Selection Operator.
Like ridge regression, this one also belongs to regularization techniques. What does it regulate? It reduces a model’s complexity by eliminating parameters that aren’t relevant, thus concentrating the selection and guaranteeing better results.
Many choose ridge regression when analyzing a model with numerous true coefficients. When there are only a few of them, use LASSO. Therefore, their applications are similar; the real difference lies in the number of available coefficients.
Elastic Net Regression
Ridge regression is good for analyzing problems involving more parameters than samples. However, it’s not perfect; this regression type doesn’t promise to eliminate irrelevant coefficients from the equation, thus affecting the results’ reliability.
On the other hand, LASSO regression eliminates irrelevant parameters, but it sometimes focuses on far too few samples for high-dimensional data.
As you can see, both regressions are flawed in a way. Elastic net regression is the combination of the best characteristics of these regression techniques. The first phase is finding ridge coefficients, while the second phase involves a LASSO-like shrinkage of these coefficients to get the best results.
Support Vector Regression
Support vector machine (SVM) belongs to supervised learning algorithms and has two important uses:
- Regression
- Classification problems
Let’s try to draw a mental picture of how SVM works. Suppose you have two classes of items (let’s call them red circles and green triangles). Red circles are on the left, while green triangles are on the right. You can separate these two classes by drawing a line between them.
Things get a bit more complicated if you have red circles in the middle and green triangles wrapped around them. In that case, you can’t draw a line to separate the classes. But you can add new dimensions to the mix and create a circle (rectangle, square, or a different shape encompassing just the red circles).
This is what SVM does. It creates a hyperplane and analyzes classes depending on where they belong.
There are a few parameters you need to understand to grasp the reach of SVM fully:
- Kernel – When you can’t find a hyperplane in a dimension, you move to a higher dimension, which is often challenging to navigate. A kernel is like a navigator that helps you find the hyperplane without plummeting computational costs.
- Hyperplane – This is what separates two classes in SVM.
- Decision boundary – Think of this as a line that helps you “decide” the placement of positive and negative examples.
Support vector regression takes a similar approach. It also creates a hyperplane to analyze classes but doesn’t classify them depending on where they belong. Instead, it tries to find a hyperplane that contains a maximum number of data points. At the same time, support vector regression tries to lower the risk of prediction errors.
SVM has various applications. It can be used in finance, bioinformatics, engineering, HR, healthcare, image processing, and other branches.
Decision Tree Regression
This type of supervised learning algorithm can solve both regression and classification issues and work with categorical and numerical datasets.
As its name indicates, decision tree regression deconstructs problems by creating a tree-like structure. In this tree, every node is a test for an attribute, every branch is the result of a test, and every leaf is the final result (decision).
The starting point of (the root) of every tree regression is the parent node. This node splits into two child nodes (data subsets), which are then further divided, thus becoming “parents” to their “children,” and so on.
You can compare a decision tree to a regular tree. If you take care of it and prune the unnecessary branches (those with irrelevant features), you’ll grow a healthy tree (a tree with concise and relevant results).
Due to its versatility and digestibility, decision tree regression can be used in various fields, from finance and healthcare to marketing and education. It offers a unique approach to decision-making by breaking down complex datasets into easy-to-grasp categories.
Random Forest Regression
Random forest regression is essentially decision tree regression but on a much bigger scale. In this case, you have multiple decision trees, each predicting a certain output. Random forest regression analyzes the outputs of every decision tree to come up with the final result.
Keep in mind that the decision trees used in random forest regression are completely independent; there’s no interaction between them until their outputs are analyzed.
Random forest regression is an ensemble learning technique, meaning it combines the results (predictions) of several machine learning algorithms to create one final prediction.
Like decision tree regression, this one can be used in numerous industries.
The Importance of Regression in Machine Learning Is Immeasurable
Regression in machine learning is like a high-tech detective. It travels back in time, identifies valuable clues, and analyzes them thoroughly. Then, it uses the results to predict outcomes with high accuracy and precision. As such, regression found its way to all niches.
You can use it in sales to analyze the customers’ behavior and anticipate their future interests. You can also apply it in finance, whether to discover trends in prices or analyze the stock market. Regression is also used in education, the tech industry, weather forecasting, and many other spheres.
Every regression technique can be valuable, but only if you know how to use it to your advantage. Think of your scenario (variables you want to analyze) and find the best actor (regression technique) who can breathe new life into it.
Related posts
Bring talented tech experts together, set them a challenge, and give them a deadline. Then, let them loose and watch the magic happen. That, in a nutshell, is what hackathons are all about. They’re proven to be among the most productive tech events when it comes to solving problems and accelerating innovation.
What Is a Hackathon?
Put simply, a hackathon is a short-term event – often lasting just a couple of days, or sometimes even only a matter of hours – where tech experts come together to solve a specific problem or come up with ideas based on a central theme or topic. As an example, teams might be tasked with discovering a new way to use AI in marketing or to create an app aimed at improving student life.
The term combines the words “hack” and “marathon,” due to how participants (hackers or programmers) are encouraged to work around-the-clock to create a prototype, proof-of-concept, or new solution. It’s similar to how marathon runners are encouraged to keep running, putting their skills and endurance to the test in a race to the finish line.
The Benefits of Hackathons
Hackathons provide value both for the companies that organize them and the people who take part. Companies can use them to quickly discover new ideas or overcome challenges, for example, while participants can enjoy testing their skills, innovating, networking, and working either alone or as part of a larger team.
Benefits for Companies and Sponsors
Many of the world’s biggest brands have come to rely on hackathons as ways to drive innovation and uncover new products, services, and opportunities. Meta, for example, the brand behind Facebook, has organized dozens of hackathons, some of which have led to the development of well-known Facebook features, like the “Like” button. Here’s how hackathons help companies:
- Accelerate Innovation: In fast-moving fields like technology, companies can’t always afford to spend months or years working on new products or features. They need to be able to solve problems quickly, and hackathons create the necessary conditions to deliver rapid success.
- Employee Development: Leading companies like Meta have started to use annual hackathons as a way to not only test their workforce’s skills but to give employees opportunities to push themselves and broaden their skill sets.
- Internal Networking: Hackathons also double up as networking events. They give employees from different teams, departments, or branches the chance to work with and learn from one another. This, in turn, can promote or reinforce team-oriented work cultures.
- Talent Spotting: Talents sometimes go unnoticed, but hackathons give your workforce’s hidden gems a chance to shine. They’re terrific opportunities to see who your best problem solvers and most creative thinkers at.
- Improving Reputation: Organizing regular hackathons helps set companies apart from their competitors, demonstrating their commitment to innovation and their willingness to embrace new ideas. If you want your brand to seem more forward-thinking and innovative, embracing hackathons is a great way to go about it.
Benefits for Participants
The hackers, developers, students, engineers, and other people who take part in hackathons arguably enjoy even bigger and better benefits than the businesses behind them. These events are often invaluable when it comes to upskilling, networking, and growing, both personally and professionally. Here are some of the main benefits for participants, explained:
- Learning and Improvement: Hackathons are golden opportunities for participants to gain knowledge and skills. They essentially force people to work together, sharing ideas, contributing to the collective, and pushing their own boundaries in pursuit of a common goal.
- Networking: While some hackathons are purely internal, others bring together different teams or groups of people from different schools, businesses, and places around the world. This can be wonderful for forming connections with like-minded individuals.
- Sense of Pride: Everyone feels a sense of pride after accomplishing a project or achieving a goal, but this often comes at the end of weeks or months of effort. With hackathons, participants can enjoy that same satisfying feeling after just a few hours or a couple of days of hard work.
- Testing Oneself: A hackathon is an amazing chance to put one’s skills to the test and see what one is truly capable of when given a set goal to aim for and a deadline to meet. Many participants are surprised to see how well they respond to these conditions.
- Boosting Skills: Hackathons provide the necessary conditions to hone and improve a range of core soft skills, such as teamwork, communication, problem-solving, organization, and punctuality. By the end, participants often emerge with more confidence in their abilities.
Hackathons at OPIT
The Open Institute of Technology (OPIT) understands the unique value of hackathons and has played its part in sponsoring these kinds of events in the past. OPIT was one of the sponsors behind ESCPHackathon 6, for example, which involved 120 students given AI-related tasks, with mentorship and guidance from senior professionals and developers from established brands along the way.
Marco Fediuc, one of the participants, summed up the mood in his comments:
“The hackathon was a truly rewarding experience. I had the pleasure of meeting OPIT classmates and staff and getting to know them better, the chance to collaborate with brilliant minds, and the opportunity to take part in an exciting and fun event.
“Participating turned out to be very useful because I had the chance to work in a fast-paced, competitive environment, and it taught me what it means to stay calm and perform under pressure… To prospective Computer Science students, should a similar opportunity arise, I can clearly say: Don’t underestimate yourselves!”
The new year will also see the arrival of OPIT Hackathon 2026, giving more students the chance to test their skills, broaden their networks, and enjoy the one-of-a-kind experiences that these events never fail to deliver. This event is scheduled to be held February 13-15, 2026, and is open to all OPIT Bachelor’s and Master’s students, along with recent graduates. Interested parties have until February 1 to register.
The Open Institute of Technology (OPIT) recently held its first-ever career fair to showcase its wide array of career education options and services. Representatives from numerous high-profile international companies were in attendance, and students enjoyed unprecedented opportunities to connect with business leaders, expand their professional networks, and pave the way for success in their future careers.
Here’s a look back at the event and how it ties into OPIT’s diverse scope of career services.
Introducing OPIT
For those who aren’t yet familiar, OPIT is an EU-accredited Higher Education Institution, offering online degrees in technological fields such as computer science, data science, artificial intelligence, cybersecurity, and digital business. Aimed at making high-level tech education accessible to all, OPIT has assembled a stellar team of tutors and experts to train the tech leaders of tomorrow.
The First OPIT Career Fair
OPIT’s first career fair was held on November 19 and 20. And as with OPIT’s lectures, it was an exclusively online event, which ensured that every attendee had equal access to key lectures and information. Interested potential students from all over the world were able to enjoy the same great experience, demonstrating a core principle that OPIT has championed from the very start – the principles of accessibility and the power of virtual learning.
More than a dozen leading international companies took part in the event, with the full guest list including representatives from:
- Deloitte
- Dylog Hitech
- EDIST Engineering Srl
- Tinexta Cyber
- Datapizza
- RWS Group
- WE GRELE FRANCE
- Avatar Investments
- Planet Farms
- Coolshop
- Hoist Finance Italia
- Gruppo Buffetti S.p.A
- Nesperia Group
- Fusion AI Labs
- Intesi Group
- Reply
- Mindsight Ventures
This was a fascinating mix of established enterprises and emerging players. Deloitte, for example, is one of the largest professional services networks in the world in terms of both revenue and number of employees. Mindsight Ventures, meanwhile, is a newer but rapidly emerging name in the fields of AI and business intelligence.
The Response
The first OPIT career fair was a success, with many students in attendance expressing their joy at being able to connect with such a strong lineup of prospective employers.
OPIT Founder and Director Riccardo Ocleppo had this to say:
“I often say internally that our connection with companies – through masterclasses, thesis and capstone projects, and career opportunities – is the ‘cherry on the cake’ of the OPIT experience!
“It’s also a core part of our mission: making higher education more practical, more connected, and more aligned with what happens in the real world.
“Our first Career Fair says a lot about our commitment to building an end-to-end learning and professional growth experience for our community of students.
“Thank you to the Student and Career Services team, and to Stefania Tabi for making this possible.”
Representatives from some of the companies that attended also shared positive impressions of the event. A representative from Nesperia Group, for example, said:
“Nesperia Group would like to thank OPIT for the warm welcome we received during the OPIT Career Day. We were pleased to be part of the event because we met many talented young professionals. Their curiosity and their professional attitude really impressed us, and it’s clear that OPIT is doing an excellent job supporting their growth. We really believe that events like these are important because they can create a strong connection between companies and future professionals.”
The Future
Given the enormous success of the first OPIT career fair, it’s highly likely that students will be able to enjoy more events like this in the years to come. OPIT is clearly committed to making the most of its strong business connections and remarkable network to provide opportunities for growth, development, and employment, bringing students and businesses together.
Future events will continue to allow students to connect with some of the biggest businesses in the world, along with emerging names in the most exciting and innovative tech fields. This should allow OPIT graduates to enter the working world with strong networks and firm connections already established. That, in turn, should make it easier for them to access and enjoy a wealth of beneficial professional opportunities.
Given that OPIT also has partnerships in place with numerous other leading organizations, like Hype, AWS, and Accenture, the number and variety of the companies potentially making appearances at career fairs in the future should no doubt increase dramatically.
Other Career Services at OPIT
The career fair is just one of many ways in which OPIT leverages its company connections and offers professional opportunities and career support to its students. Other key career services include:
- Career Coaching: Students are able to schedule one-on-one sessions with their own mentors and career advisors. They can receive feedback on their resumes, practice and improve their interview skills, or work on clear action plans that align with their exact professional goals.
- Resource Hub: The OPIT Resource Hub is jam-packed with helpful guides and other resources to help students plan out and take smart steps in their professional endeavors. With detailed insights and practical tips, it can help tech graduates get off to the best possible start.
- Career Events: The career fair is only one of several planned career-related events organized by OPIT. Other events are planned to give students the chance to learn from and engage with industry experts and leading tech firms, with workshops, career skills days, and more.
- Internships: OPIT continues to support students after graduation, offering internship opportunities with leading tech firms around the world. These internships are invaluable for gaining experience and forging connections, setting graduates up for future success.
- Peer Mentoring: OPIT also offers a peer mentoring program in which existing students can team up with OPIT alumni to enjoy the benefits of their experience and unique insights.
These services – combined with the recent career day – clearly demonstrate OPIT’s commitment to not merely educating the tech leaders of the future, but also to supporting their personal and professional development beyond the field of education, making it easier for them to enter the working world with strong connections and unrivaled opportunities.
Have questions?
Visit our FAQ page or get in touch with us!
Write us at +39 335 576 0263
Get in touch at hello@opit.com
Talk to one of our Study Advisors
We are international
We can speak in: