How do machine learning professionals make data readable and accessible? What techniques do they use to dissect raw information?

One of these techniques is clustering. Data clustering is the process of grouping items in a data set together. These items are related, allowing key stakeholders to make critical strategic decisions using the insights.

After preparing data, which is what specialists do 50%-80% of the time, clustering takes center stage. It forms structures other members of the company can understand more easily, even if they lack advanced technical knowledge.

Clustering in machine learning involves many techniques to help accomplish this goal. Here is a detailed overview of those techniques.

Clustering Techniques

Data science is an ever-changing field with lots of variables and fluctuations. However, one thing’s for sure – whether you want to practice clustering in data mining or clustering in machine learning, you can use a wide array of tools to automate your efforts.

Partitioning Methods

The first groups of techniques are the so-called partitioning methods. There are three main sub-types of this model.

K-Means Clustering

K-means clustering is an effective yet straightforward clustering system. To execute this technique, you need to assign clusters in your data sets. From there, define your number K, which tells the program how many centroids (“coordinates” representing the center of your clusters) you need. The machine then recognizes your K and categorizes data points to nearby clusters.

You can look at K-means clustering like finding the center of a triangle. Zeroing in on the center lets you divide the triangle into several areas, allowing you to make additional calculations.

And the name K-means clustering is pretty self-explanatory. It refers to finding the median value of your clusters – centroids.

K-Medoids Clustering

K-means clustering is useful but is prone to so-called “outlier data.” This information is different from other data points and can merge with others. Data miners need a reliable way to deal with this issue.

Enter K-medoids clustering.

It’s similar to K-means clustering, but just like planes overcome gravity, so does K-medoids clustering overcome outliers. It utilizes “medoids” as the reference points – which contain maximum similarities with other data points in your cluster. As a result, no outliers interfere with relevant data points, making this one of the most dependable clustering techniques in data mining.

Fuzzy C-Means Clustering

Fuzzy C-means clustering is all about calculating the distance from the median point to individual data points. If a data point is near the cluster centroid, it’s relevant to the goal you want to accomplish with your data mining. The farther you go from this point, the farther you move the goalpost and decrease relevance.

Hierarchical Methods

Some forms of clustering in machine learning are like textbooks – similar topics are grouped in a chapter and are different from topics in other chapters. That’s precisely what hierarchical clustering aims to accomplish. You can the following methods to create data hierarchies.

Agglomerative Clustering

Agglomerative clustering is one of the simplest forms of hierarchical clustering. It divides your data set into several clusters, making sure data points are similar to other points in the same cluster. By grouping them, you can see the differences between individual clusters.

Before the execution, each data point is a full-fledged cluster. The technique helps you form more clusters, making this a bottom-up strategy.

Divisive Clustering

Divisive clustering lies on the other end of the hierarchical spectrum. Here, you start with just one cluster and create more as you move through your data set. This top-down approach produces as many clusters as necessary until you achieve the requested number of partitions.

Density-Based Methods

Birds of a feather flock together. That’s the basic premise of density-based methods. Data points that are close to each other form high-density clusters, indicating their cohesiveness. The two primary density-based methods of clustering in data mining are DBSCAN and OPTICS.

DBSCAN (Density-Based Spatial Clustering of Applications With Noise)

Related data groups are close to each other, forming high-density areas in your data sets. The DBSCAN method picks up on these areas and groups information accordingly.

OPTICS (Ordering Points to Identify the Clustering Structure)

The OPTICS technique is like DBSCAN, grouping data points according to their density. The only major difference is that OPTICS can identify varying densities in larger groups.

Grid-Based Methods

You can see grids on practically every corner. They can easily be found in your house or your car. They’re also prevalent in clustering.

STING (Statistical Information Grid)

The STING grid method divides a data point into rectangular grills. Afterward, you determine certain parameters for your cells to categorize information.

CLIQUE (Clustering in QUEst)

Agglomerative clustering isn’t the only bottom-up clustering method on our list. There’s also the CLIQUE technique. It detects clusters in your environment and combines them according to your parameters.

Model-Based Methods

Different clustering techniques have different assumptions. The assumption of model-based methods is that a model generates specific data points. Several such models are used here.

Gaussian Mixture Models (GMM)

The aim of Gaussian mixture models is to identify so-called Gaussian distributions. Each distribution is a cluster, and any information within a distribution is related.

Hidden Markov Models (HMM)

Most people use HMM to determine the probability of certain outcomes. Once they calculate the probability, they can figure out the distance between individual data points for clustering purposes.

Spectral Clustering

If you often deal with information organized in graphs, spectral clustering can be your best friend. It finds related groups of notes according to linked edges.

Comparison of Clustering Techniques

It’s hard to say that one algorithm is superior to another because each has a specific purpose. Nevertheless, some clustering techniques might be especially useful in particular contexts:

  • OPTICS beats DBSCAN when clustering data points with different densities.
  • K-means outperforms divisive clustering when you wish to reduce the distance between a data point and a cluster.
  • Spectral clustering is easier to implement than the STING and CLIQUE methods.

Cluster Analysis

You can’t put your feet up after clustering information. The next step is to analyze the groups to extract meaningful information.

Importance of Cluster Analysis in Data Mining

The importance of clustering in data mining can be compared to the importance of sunlight in tree growth. You can’t get valuable insights without analyzing your clusters. In turn, stakeholders wouldn’t be able to make critical decisions about improving their marketing efforts, target audience, and other key aspects.

Steps in Cluster Analysis

Just like the production of cars consists of many steps (e.g., assembling the engine, making the chassis, painting, etc.), cluster analysis is a multi-stage process:

Data Preprocessing

Noise and other issues plague raw information. Data preprocessing solves this issue by making data more understandable.

Feature Selection

You zero in on specific features of a cluster to identify those clusters more easily. Plus, feature selection allows you to store information in a smaller space.

Clustering Algorithm Selection

Choosing the right clustering algorithm is critical. You need to ensure your algorithm is compatible with the end result you wish to achieve. The best way to do so is to determine how you want to establish the relatedness of the information (e.g., determining median distances or densities).

Cluster Validation

In addition to making your data points easily digestible, you also need to verify whether your clustering process is legit. That’s where cluster validation comes in.

Cluster Validation Techniques

There are three main cluster validation techniques when performing clustering in machine learning:

Internal Validation

Internal validation evaluates your clustering based on internal information.

External Validation

External validation assesses a clustering process by referencing external data.

Relative Validation

You can vary your number of clusters or other parameters to evaluate your clustering. This procedure is known as relative validation.

Applications of Clustering in Data Mining

Clustering may sound a bit abstract, but it has numerous applications in data mining.

  • Customer Segmentation – This is the most obvious application of clustering. You can group customers according to different factors, like age and interests, for better targeting.
  • Anomaly Detection – Detecting anomalies or outliers is essential for many industries, such as healthcare.
  • Image Segmentation – You use data clustering if you want to recognize a certain object in an image.
  • Document Clustering – Organizing documents is effortless with document clustering.
  • Bioinformatics and Gene Expression Analysis – Grouping related genes together is relatively simple with data clustering.

Challenges and Future Directions

  • Scalability – One of the biggest challenges of data clustering is expected to be applying the process to larger datasets. Addressing this problem is essential in a world with ever-increasing amounts of information.
  • Handling High-Dimensional Data – Future systems may be able to cluster data with thousands of dimensions.
  • Dealing with Noise and Outliers – Specialists hope to enhance the ability of their clustering systems to reduce noise and lessen the influence of outliers.
  • Dynamic Data and Evolving Clusters – Updates can change entire clusters. Professionals will need to adapt to this environment to retain efficiency.

Elevate Your Data Mining Knowledge

There are a vast number of techniques for clustering in machine learning. From centroid-based solutions to density-focused approaches, you can take many directions when grouping data.

Mastering them is essential for any data miner, as they provide insights into crucial information. On top of that, the data science industry is expected to hit nearly $26 billion by 2026, which is why clustering will become even more prevalent.

Related posts

The 10 Things That We Should Reflect Upon for 2026
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Jan 19, 2026 6 min read

2025 has come to a close, with 2026 already underway. There are many exciting events ahead and future milestones to aim for and look forward to. But it’s also the ideal time to look back over the last 12 months, exploring the most notable achievements we’ve made, lessons we’ve learned, and important moments to reflect on as the new year continues for OPIT’s staff, students, and broader community.

1. Student Commitment

Studying isn’t always easy. It involves long days, and even long evenings sometimes, with a seemingly never-ending series of tasks to accomplish and goals to aim for. It can take a lot out of even the most hard-working and dedicated individuals.

Yet, despite the hardships and challenges, OPIT students demonstrated remarkable resilience, continuous curiosity, and indefatigable determination throughout 2025. Looking back on the year, students at all levels of the OPIT community should feel proud and celebrate their accomplishments.

2. Podcast Launch

2025 saw a lot of new arrivals at OPIT, with fresh projects and innovations arriving on the scene. Chief among them was the OPIT EDGE Podcast, an exciting addition to the institute’s ever-expanding multimedia offerings.

There have already been several episodes of the podcast for students and technology enthusiasts in general to enjoy, with the first episode of this student-driven project involving an in-depth discussion with industry expert Matteo Zangani on the potential of quantum AI technology.

3. Success Stories

While many new students have joined the OPIT ranks in 2025 and will also do so in 2026, others have now achieved their educational objectives and are already moving on to the next exciting steps and chapters in their personal and professional lives.

There are so many inspiring success stories from the last 12 months, it’s impossible to list them all. But just one notable example has to be Maria Brilaki, who recently concluded her Master’s in Responsible AI, defending a powerful thesis related to non-invasive glucose monitoring through near-infrared spectroscopy and machine learning.

4. Graduation in Malta

2025 was a big year of firsts for OPIT, including the institute’s first official graduation ceremony, which took place on March 8 at a grand ceremony in Malta, honoring the achievements of dozens of applied data science and AI graduates.

The hybrid event was open to both in-person and virtual attendees, bringing together members of the OPIT community from across the world. It was a huge moment for the graduates themselves and a thrilling milestone for OPI – a testament to all the hard work that has gone into building this institute.

5. OPIT AI Copilot

Artificial intelligence is the technology of the moment, and OPIT isn’t just dedicated to teaching the next-generation of technology leaders how to work with AI responsibly and efficiently; it’s also interested in harnessing the powers and potential of AI to improve its educational offerings, too.

This culminated in the development and release of OPIT AI Copilot in 2025. This groundbreaking AI tool now provides real-time, personalized learning support, along with contextual assistance, and is available on a round-the-clock basis for students to turn to, as and when they feel the need.

6. Hackathons

2025 also saw OPIT students and faculty take more active roles in various events, including hackathons. In November, for example, OPIT got involved with the 6th edition of the ESCP Hackathon, with several students entering as developers.

This was an exciting and unique opportunity for those students to meet up in person, put the skills they’ve honed during their time at OPIT to the test in a challenging environment, and learn from one another. OPIT will surely participate in more hackathons in the years to come, so stay tuned for more details on upcoming events and how you can play your part.

7. Strengthening Collaboration

From day one, OPIT has focused on building a strong network of established technology and business partners, opening doors and providing opportunities for both education and employment for its students.

This continued throughout 2025, with OPIT strengthening its connections with a number of world-leading organizations, including Accenture, AWS, Hype, Buffetti, and more. Through events like hackathons, career fairs, and more, OPIT makes the most of its ever-expanding and increasingly impressive professional network.

8. Online Career Fair

Another big first for 2025 was the inaugural OPIT Online Career Fair, an event that was held on November 19 and 20, with more than a dozen established and emerging companies from around the world in attendance, including the likes of Deloitte, Tinexta Cyber, Datapizza, RWS Group, Planet Farms, and Nesperia Group.

The only nature of this event ensured that students all enjoyed equal access, no matter where they were based, and everyone was able to hear from industry experts and enjoy the unique array of opportunities on offer, forging their own connections and learning more about brands they might like to work with or for in the future.

9. Education Innovation

OPIT has always been about innovating, delivering newer and smarter ways to learn for students across the globe, no matter their background, budget, or social class. And the institute has continually innovated over the course of 2025, helping students learn skills and broaden their knowledge efficiently and intuitively.

As we enter 2026, OPIT’s innovation is set to be on full display once more, with no less than two new courses for new applicants to choose from: AI-Driven Software Development (Elective) and Business Intelligence and Decision Making (Elective).

10. The Power of the OPIT Community

Perhaps the crowning achievement for OPIT in 2025 was the demonstrable success of not just individual students or faculty members, but the entire OPIT community, as a whole. Everyone, from alumni to new students and seasoned staff members, played their part in the institute’s success, paving the way for more great things and major milestones in 2026 and beyond.

As OPIT Rector and former Italian Minister of Education, Francesco Profumo, puts it:

“What inspires me most is the mindset of our students: forward-looking, responsible, and driven by a desire not just to succeed, but to contribute. Their dedication reminds us why education remains one of the most powerful forces for shaping the future.”

Read the article
The Value of Hackathons
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Jan 5, 2026 6 min read

Bring talented tech experts together, set them a challenge, and give them a deadline. Then, let them loose and watch the magic happen. That, in a nutshell, is what hackathons are all about. They’re proven to be among the most productive tech events when it comes to solving problems and accelerating innovation.

What Is a Hackathon?

Put simply, a hackathon is a short-term event – often lasting just a couple of days, or sometimes even only a matter of hours – where tech experts come together to solve a specific problem or come up with ideas based on a central theme or topic. As an example, teams might be tasked with discovering a new way to use AI in marketing or to create an app aimed at improving student life.

The term combines the words “hack” and “marathon,” due to how participants (hackers or programmers) are encouraged to work around-the-clock to create a prototype, proof-of-concept, or new solution. It’s similar to how marathon runners are encouraged to keep running, putting their skills and endurance to the test in a race to the finish line.

The Benefits of Hackathons

Hackathons provide value both for the companies that organize them and the people who take part. Companies can use them to quickly discover new ideas or overcome challenges, for example, while participants can enjoy testing their skills, innovating, networking, and working either alone or as part of a larger team.

Benefits for Companies and Sponsors

Many of the world’s biggest brands have come to rely on hackathons as ways to drive innovation and uncover new products, services, and opportunities. Meta, for example, the brand behind Facebook, has organized dozens of hackathons, some of which have led to the development of well-known Facebook features, like the “Like” button. Here’s how hackathons help companies:

  • Accelerate Innovation: In fast-moving fields like technology, companies can’t always afford to spend months or years working on new products or features. They need to be able to solve problems quickly, and hackathons create the necessary conditions to deliver rapid success.
  • Employee Development: Leading companies like Meta have started to use annual hackathons as a way to not only test their workforce’s skills but to give employees opportunities to push themselves and broaden their skill sets.
  • Internal Networking: Hackathons also double up as networking events. They give employees from different teams, departments, or branches the chance to work with and learn from one another. This, in turn, can promote or reinforce team-oriented work cultures.
  • Talent Spotting: Talents sometimes go unnoticed, but hackathons give your workforce’s hidden gems a chance to shine. They’re terrific opportunities to see who your best problem solvers and most creative thinkers at.
  • Improving Reputation: Organizing regular hackathons helps set companies apart from their competitors, demonstrating their commitment to innovation and their willingness to embrace new ideas. If you want your brand to seem more forward-thinking and innovative, embracing hackathons is a great way to go about it.

Benefits for Participants

The hackers, developers, students, engineers, and other people who take part in hackathons arguably enjoy even bigger and better benefits than the businesses behind them. These events are often invaluable when it comes to upskilling, networking, and growing, both personally and professionally. Here are some of the main benefits for participants, explained:

  • Learning and Improvement: Hackathons are golden opportunities for participants to gain knowledge and skills. They essentially force people to work together, sharing ideas, contributing to the collective, and pushing their own boundaries in pursuit of a common goal.
  • Networking: While some hackathons are purely internal, others bring together different teams or groups of people from different schools, businesses, and places around the world. This can be wonderful for forming connections with like-minded individuals.
  • Sense of Pride: Everyone feels a sense of pride after accomplishing a project or achieving a goal, but this often comes at the end of weeks or months of effort. With hackathons, participants can enjoy that same satisfying feeling after just a few hours or a couple of days of hard work.
  • Testing Oneself: A hackathon is an amazing chance to put one’s skills to the test and see what one is truly capable of when given a set goal to aim for and a deadline to meet. Many participants are surprised to see how well they respond to these conditions.
  • Boosting Skills: Hackathons provide the necessary conditions to hone and improve a range of core soft skills, such as teamwork, communication, problem-solving, organization, and punctuality. By the end, participants often emerge with more confidence in their abilities.

Hackathons at OPIT

The Open Institute of Technology (OPIT) understands the unique value of hackathons and has played its part in sponsoring these kinds of events in the past. OPIT was one of the sponsors behind ESCPHackathon 6, for example, which involved 120 students given AI-related tasks, with mentorship and guidance from senior professionals and developers from established brands along the way.

Marco Fediuc, one of the participants, summed up the mood in his comments:

“The hackathon was a truly rewarding experience. I had the pleasure of meeting OPIT classmates and staff and getting to know them better, the chance to collaborate with brilliant minds, and the opportunity to take part in an exciting and fun event.

“Participating turned out to be very useful because I had the chance to work in a fast-paced, competitive environment, and it taught me what it means to stay calm and perform under pressure… To prospective Computer Science students, should a similar opportunity arise, I can clearly say: Don’t underestimate yourselves!”

The new year will also see the arrival of OPIT Hackathon 2026, giving more students the chance to test their skills, broaden their networks, and enjoy the one-of-a-kind experiences that these events never fail to deliver. This event is scheduled to be held February 13-15, 2026, and is open to all OPIT Bachelor’s and Master’s students, along with recent graduates. Interested parties have until February 1 to register.

Read the article