In today’s digital landscape, few businesses can go without relying on cloud computing to build a rock-solid IT infrastructure. Boosted efficiency, reduced expenses, and increased scalability are just some of the reasons behind its increasing popularity.

In case you aren’t familiar with the concept, cloud computing refers to running software and services on the internet using data stored on outside sources. So, instead of owning and maintaining their infrastructure locally and physically, businesses access cloud-based services as needed.

And what is found in the cloud? Well, any crucial business data that you can imagine. Customer information, business applications, data backups, and the list can go on.

Given this data’s sensitivity, cloud computing security is of utmost importance.

Unfortunately, cloud computing isn’t the only aspect that keeps evolving. So do the risks, issues, and challenges threatening its security.

Let’s review the most significant security issues in cloud computing and discuss how to address them adequately.

Understanding Cloud Computing Security Risks

Cloud computing security risks refer to potential vulnerabilities in the system that malicious actors can exploit for their own benefit. Understanding these risks is crucial to selecting the right cloud computing services for your business or deciding if cloud computing is even the way to go.

Data Breaches

A data breach happens when unauthorized individuals access, steal, or publish sensitive information (names, addresses, credit card information). Since these incidents usually occur without the organization’s knowledge, the attackers have ample time to do severe damage.

What do we mean by damage?

Well, in this case, damage can refer to various scenarios. Think everything from using the stolen data for financial fraud to sabotaging the company’s stock price. It all depends on the type of stolen data.

Whatever the case, companies rarely put data breaches behind them without a severely damaged reputation, significant financial loss, or extensive legal consequences.

Data Loss

The business world revolves around data. That’s why attackers target it. And why companies fight so hard to preserve it.

As the name implies, data loss occurs when a company can no longer access its previously stored information.

Sure, malicious attacks are often behind data loss. But this is only one of the causes of this unfortunate event.

The cloud service provider can also accidentally delete your vital data. Physical catastrophes (fires, floods, earthquakes, tornados, explosions) can also have this effect, as can data corruption, software failure, and many other mishaps.

Account Hijacking

Using (or reusing) weak passwords as part of cloud-based infrastructure is basically an open invitation for account hijacking.

Again, the name is pretty self-explanatory – a malicious actor gains complete control over your online accounts. From there, the hijacker can access sensitive data, perform unauthorized actions, and compromise other associated accounts.

Insecure APIs

In cloud computing, communication service providers (CSPs) offer their customers numerous Application Programming Interfaces (APIs). These easy-to-use interfaces allow customers to manage their cloud-based services. But besides being easy to use, some of these APIs can be equally easy to exploit. For this reason, cybercriminals often prey on insecure APIs as their access points for infiltrating the company’s cloud environment.

Denial of Service (DoS) Attacks

Denial of service (DoS) attacks have one goal – to render your network or server inaccessible. They do so by overwhelming them with traffic until they malfunction or crash.

It’s clear that these attacks can cause severe damage to any business. Now imagine what they can do to companies that rely on those online resources to store business-critical data.

Insider Threats

Not all employees will have your company’s best interest at heart, not to mention ex-employees. If these individuals abuse their authorized access, they can wreak havoc on your networks, systems, and data.

Insider threats are more challenging to spot than external attacks. After all, these individuals know your business inside out, positioning them to cause serious damage while staying undetected.

Advanced Persistent Threats (APTs)

With advanced persistent threats (APTs), it’s all about the long game. The intruder will infiltrate your company’s cloud environment and fly under the radar for quite some time. Of course, they’ll use this time to steal sensitive data from your business’s every corner.

Challenges in Cloud Computing Security

Security challenges in cloud computing refer to hurdles your company might hit while implementing cloud computing security.

Shared Responsibility Model

A shared responsibility model is precisely what it sounds like. The responsibility for maintaining security falls on several individuals or entities. In cloud computing, these parties include the CSP and your business (as the CSP’s consumer). Even the slightest misunderstanding concerning the division of these responsibilities can have catastrophic consequences for cloud computing security.

Compliance With Regulations and Standards

Organizations must store their sensitive data according to specific regulations and standards. Some are industry-specific, like HIPAA (Health Insurance Portability and Accountability Act) for guarding healthcare records. Others, like GDPR (General Data Protection Regulation), are more extensive. Achieving this compliance in cloud computing is more challenging since organizations typically don’t control all the layers of their infrastructure.

Data Privacy and Protection

Placing sensitive data in the cloud comes with significant exposure risks (as numerous data breaches in massive companies have demonstrated). Keeping this data private and protected is one of the biggest security challenges in cloud computing.

Lack of Visibility and Control

Once companies move their data to the cloud (located outside their corporate network), they lose some control over it. The same goes for their visibility into their network’s operations. Naturally, since companies can’t fully see or control their cloud-based resources, they sometimes fail to protect them successfully against attacks.

Vendor Lock-In and Interoperability

These security challenges in cloud computing arise when organizations want to move their assets from one CSP to another. This move is often deemed too expensive or complex, forcing the organization to stay put (vendor lock-in). Migrating data between providers can also cause different applications and systems to stop working together correctly, thus hindering their interoperability.

Security of Third-Party Services

Third-party services are often trouble, and cloud computing is no different. These services might have security vulnerabilities allowing unauthorized access to your cloud data and systems.

Issues in Cloud Computing Security

The following factors have proven as major security issues in cloud computing.

Insufficient Identity and Access Management

The larger your business, the harder it gets to establish clearly-defined roles and assign them specific permissions. However, Identity and Access Management (IAM) is vital in cloud computing. Without a comprehensive IAM strategy, a data breach is just waiting to happen.

Inadequate Encryption and Key Management

Encryption is undoubtedly one of the most effective measures for data protection. But only if it’s implemented properly. Using weak keys or failing to rotate, store, and protect them adequately is a one-way ticket to system vulnerabilities.

So, without solid encryption and coherent key management strategies, your cloud computing security can be compromised in no time.

Vulnerabilities in Virtualization Technology

Virtualization (running multiple virtual computers on the hardware elements of a single physical computer) is becoming increasingly popular. Consider the level of flexibility it allows (and at what cost!), and you’ll understand why.

However, like any other technology, virtualization is prone to vulnerabilities. And, as we’ve already established, system vulnerabilities and cloud computing security can’t go hand in hand.

Limited Incident Response Capabilities

Promptly responding to a cloud computing security incident is crucial to minimizing its potential impact on your business. Without a proper incident report strategy, attackers can run rampant within your cloud environment.

Security Concerns in Multi-Tenancy Environments

In a multi-tenancy environment, multiple accounts share the same cloud infrastructure. This means that an attack on one of those accounts (or tenants) can compromise the cloud computing security for all the rest. Keep in mind that this only applies if the CSP doesn’t properly separate the tenants.

Addressing Key Concerns in Cloud Computing Security

Before moving your data to cloud-based services, you must fully comprehend all the security threats that might await. This way, you can implement targeted cloud computing security measures and increase your chances of emerging victorious from a cyberattack.

Here’s how you can address some of the most significant cloud computing security concerns:

  • Implement strong authentication and access controls (introducing multifactor authentication, establishing resource access policies, monitoring user access rights).
  • Ensure data encryption and secure key management (using strong keys, rotating them regularly, and protecting them beyond CSP’s measures).
  • Regularly monitor and audit your cloud environments (combining CSP-provided monitoring information with your cloud-based and on-premises monitoring information for maximum security).
  • Develop a comprehensive incident response plan (relying on the NIST [National Institute of Standards and Technology] or the SANS [SysAdmin, Audit, Network, and Security] framework).
  • Collaborate with cloud service providers to successfully share security responsibilities (coordinating responses to threats and investigating potential threats).

Weathering the Storm in Cloud Computing

Due to the importance of the data they store, cloud-based systems are constantly exposed to security threats. Compare the sheer number of security risks to the number of challenges and issues in addressing them promptly, and you’ll understand why cloud computing security sometimes feels like an uphill battle.

Since these security threats are ever-evolving, staying vigilant, informed, and proactive is the only way to stay on top of your cloud computing security. Pursue education in this field, and you can achieve just that.

Related posts

Agenda Digitale: Regenerative Business – The Future of Business Is Net-Positive
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Dec 8, 2025 5 min read

Source:


The net-positive model transcends traditional sustainability by aiming to generate more value than is consumed. Blockchain, AI, and IoT enable scalable circular models. Case studies demonstrate how profitability and positive impact combine to regenerate business and the environment.

By Francesco Derchi, Professor and Area Chair in Digital Business @ OPIT – Open Institute of Technology

In recent years, the word ” sustainability ” has become a firm fixture in the corporate lexicon. However, simply “doing no harm” is no longer enough: the climate crisis , social inequalities , and the erosion of natural resources require a change of pace. This is where the net-positive paradigm comes in , a model that isn’t content to simply reduce negative impacts, but aims to generate more social and environmental value than is consumed.

This isn’t about philanthropy, nor is it about reputational makeovers: net-positive is a strategic approach that intertwines economics, technology, and corporate culture. Within this framework, digitalization becomes an essential lever, capable of enabling regenerative models through circular platforms and exponential technologies.

Blockchain, AI, and IoT: The Technological Triad of Regeneration

Blockchain, Artificial Intelligence, and the Internet of Things represent the technological triad that makes this paradigm shift possible. Each addresses a critical point in regeneration.

Blockchain guarantees the traceability of material flows and product life cycles, allowing a regenerated dress or a bottle collected at sea to tell their story in a transparent and verifiable way.

Artificial Intelligence optimizes recovery and redistribution chains, predicting supply and demand, reducing waste and improving the efficiency of circular processes .

Finally, IoT enables real-time monitoring, from sensors installed at recycling plants to sharing mobility platforms, returning granular data for quick, informed decisions.

These integrated technologies allow us to move beyond linear vision and enable systems in which value is continuously regenerated.

New business models: from product-as-a-service to incentive tokens

Digital regeneration is n’t limited to the technological dimension; it’s redefining business models. More and more companies are adopting product-as-a-service approaches , transforming goods into services: from technical clothing rentals to pay-per-use for industrial machinery. This approach reduces resource consumption and encourages modular design, designed for reuse.

At the same time, circular marketplaces create ecosystems where materials, components, and products find new life. No longer waste, but input for other production processes. The logic of scarcity is overturned in an economy of regenerated abundance.

To complete the picture, incentive tokens — digital tools that reward virtuous behavior, from collecting plastic from the sea to reusing used clothing — activate global communities and catalyze private capital for regeneration.

Measuring Impact: Integrated Metrics for Net-Positiveness

One of the main obstacles to the widespread adoption of net-positive models is the difficulty of measuring their impact. Traditional profit-focused accounting systems are not enough. They need to be combined with integrated metrics that combine ESG and ROI, such as impact-weighted accounting or innovative indicators like lifetime carbon savings.

In this way, companies can validate the scalability of their models and attract investors who are increasingly attentive to financial returns that go hand in hand with social and environmental returns.

Case studies: RePlanet Energy, RIFO, and Ogyre

Concrete examples demonstrate how the combination of circular platforms and exponential technologies can generate real value. RePlanet Energy has defined its Massive Transformative Purpose as “Enabling Regeneration” and is now providing sustainable energy to Nigerian schools and hospitals, thanks in part to transparent blockchain-based supply chains and the active contribution of employees. RIFO, a Tuscan circular fashion brand, regenerates textile waste into new clothing, supporting local artisans and promoting workplace inclusion, with transparency in the production process as a distinctive feature and driver of loyalty. Ogyre incentivizes fishermen to collect plastic during their fishing trips; the recovered material is digitally tracked and transformed into new products, while the global community participates through tokens and environmental compensation programs.

These cases demonstrate how regeneration and profitability are not contradictory, but can actually feed off each other, strengthening the competitiveness of businesses.

From Net Zero to Net Positive: The Role of Massive Transformative Purpose

The crucial point lies in the distinction between sustainability and regeneration. The former aims for net zero, that is, reducing the impact until it is completely neutralized. The latter goes further, aiming for a net positive, capable of giving back more than it consumes.

This shift in perspective requires a strong Massive Transformative Purpose: an inspiring and shared goal that guides strategic choices, preventing technology from becoming a sterile end. Without this level of intentionality, even the most advanced tools risk turning into gadgets with no impact.

Regenerating business also means regenerating skills to train a new generation of professionals capable not only of using technologies but also of directing them towards regenerative business models. From this perspective, training becomes the first step in a transformation that is simultaneously cultural, economic, and social.

The Regenerative Future: Technology, Skills, and Shared Value

Digital regeneration is not an abstract concept, but a concrete practice already being tested by companies in Europe and around the world. It’s an opportunity for businesses to redefine their role, moving from mere economic operators to drivers of net-positive value for society and the environment.

The combination of blockchainAI, and IoT with circular product-as-a-service models, marketplaces, and incentive tokens can enable scalable and sustainable regenerative ecosystems. The future of business isn’t just measured in terms of margins, but in the ability to leave the world better than we found it.

Read the full article below (in Italian):

Read the article
Raconteur: AI on your terms – meet the enterprise-ready AI operating model
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Nov 18, 2025 5 min read

Source:

  • Raconteur, published on November 06th, 2025

What is the AI technology operating model – and why does it matter? A well-designed AI operating model provides the structure, governance and cultural alignment needed to turn pilot projects into enterprise-wide transformation

By Duncan Jefferies

Many firms have conducted successful Artificial Intelligence (AI) pilot projects, but scaling them across departments and workflows remains a challenge. Inference costs, data silos, talent gaps and poor alignment with business strategy are just some of the issues that leave organisations trapped in pilot purgatory. This inability to scale successful experiments means AI’s potential for improving enterprise efficiency, decision-making and innovation isn’t fully realised. So what’s the solution?

Although it’s not a magic bullet, an AI operating model is really the foundation for scaling pilot projects up to enterprise-wide deployments. Essentially it’s a structured framework that defines how the organisation develops, deploys and governs AI. By bringing together infrastructure, data, people, and governance in a flexible and secure way, it ensures that AI delivers value at scale while remaining ethical and compliant.

“A successful AI proof-of-concept is like building a single race car that can go fast,” says Professor Yu Xiong, chair of business analytics at the UK-based Surrey Business School. “An efficient AI technology operations model, however, is the entire system – the processes, tools, and team structures – for continuously manufacturing, maintaining, and safely operating an entire fleet of cars.”

But while the importance of this framework is clear, how should enterprises establish and embed it?

“It begins with a clear strategy that defines objectives, desired outcomes, and measurable success criteria, such as model performance, bias detection, and regulatory compliance metrics,” says Professor Azadeh Haratiannezhadi, co-founder of generative AI company Taktify and professor of generative AI in cybersecurity at OPIT – the Open Institute of Technology.

Platforms, tools and MLOps pipelines that enable models to be deployed, monitored and scaled in a safe and efficient way are also essential in practical terms.

“Tools and infrastructure must also be selected with transparency, cost, and governance in mind,” says Efrain Ruh, continental chief technology officer for Europe at Digitate. “Crucially, organisations need to continuously monitor the evolving AI landscape and adapt their models to new capabilities and market offerings.”

An open approach

The most effective AI operating models are also founded on openness, interoperability and modularity. Open source platforms and tools provide greater control over data, deployment environments and costs, for example. These characteristics can help enterprises to avoid vendor lock-in, successfully align AI to business culture and values, and embed it safely into cross-department workflows.

“Modularity and platformisation…avoids building isolated ‘silos’ for each project,” explains professor Xiong. “Instead, it provides a shared, reusable ‘AI platform’ that integrates toolchains for data preparation, model training, deployment, monitoring, and retraining. This drastically improves efficiency and reduces the cost of redundant work.”

A strong data strategy is equally vital for ensuring high-quality performance and reducing bias. Ideally, the AI operating model should be cloud and LLM agnostic too.

“This allows organisations to coordinate and orchestrate AI agents from various sources, whether that’s internal or 3rd party,” says Babak Hodjat, global chief technology officer of AI at Cognizant. “The interoperability also means businesses can adopt an agile iterative process for AI projects that is guided by measuring efficiency, productivity, and quality gains, while guaranteeing trust and safety are built into all elements of design and implementation.”

A robust AI operating model should feature clear objectives for compliance, security and data privacy, as well as accountability structures. Richard Corbridge, chief information officer of Segro, advises organisations to: “Start small with well-scoped pilots that solve real pain points, then bake in repeatable patterns, data contracts, test harnesses, explainability checks and rollback plans, so learning can be scaled without multiplying risk. If you don’t codify how models are approved, deployed, monitored and retired, you won’t get past pilot purgatory.”

Of course, technology alone can’t drive successful AI adoption at scale: the right skills and culture are also essential for embedding AI across the enterprise.

“Multidisciplinary teams that combine technical expertise in AI, security, and governance with deep business knowledge create a foundation for sustainable adoption,” says Professor Haratiannezhadi. “Ongoing training ensures staff acquire advanced AI skills while understanding associated risks and responsibilities.”

Ultimately, an AI operating model is the playbook that enables an enterprise to use AI responsibly and effectively at scale. By drawing together governance, technological infrastructure, cultural change and open collaboration, it supports the shift from isolated experiments to the kind of sustainable AI capability that can drive competitive advantage.

In other words, it’s the foundation for turning ambition into reality, and finally escaping pilot purgatory for good.

 

Read the full article below:

Read the article