When you decided to study for a BSc in Computer Science, you put your technical hat on. With reams of coding to wrap your head around (alongside a lot of technical talk about hardware), you’ve set yourself up for a career that could cover everything from software engineering and web development to data analysis.

But there’s another possibility that you may not have considered – engineering. Here, we answer the question “Can I do engineering after BSc Computer Science” and show you why the engineering path may be the right one to follow (both due to interest and potential career payout).

Options for Pursuing Engineering After BSc Computer Science

You have three options for pursuing engineering once you’re in possession of your BSc in Computer Science, some of which give you indirect entry into the field whereas others offer more practical or specialized education.

Lateral Entry into Engineering Courses

Your first choice is a course that combined the best of both worlds – a Bachelor of Engineering (Computer Science), otherwise known as B.E. Computer Science. As another full-time course, this program is usually spread over four years (though some institutions can fast-track you through a two-year course).

Strong high school scores in physics, math, and chemistry are a must if you decide to go down this route, with a minimum of 75% scored across all (with strong proficiency in English to boot). Assuming you hit those criteria, many colleges ask students to complete the Joint Entrance Exam (JEE), which is an exam that assesses your technical abilities and how you can apply those abilities to practical problems.

Master’s Degree in Engineering

Rather than going back to the bachelor’s level to study engineering after finishing your BSc in Computer Science (which is a lateral step as described above), you could keep marching forward. A Master’s degree in engineering is a post-graduate qualification, with most courses requiring you to have a Bachelor’s degree in a suitable technical subject. Engineering is the most obvious choice, though many Master’s programs accept students with computing backgrounds due to the technical nature of their knowledge.

Often called a “terminal” degree, meaning there are no doctorates for the engineering field, a Master’s in engineering should leave you with full accreditation so you can begin a career as a chartered engineer. Thankfully, you don’t usually have to rely on an entrance exam to start the course, as long as you have an appropriate Bachelor’s degree.

Specialized Engineering Courses and Certifications

There’s plenty of crossover between the engineering and computer science paths, particularly when it comes to devising solutions for physical hardware:

  • Network Engineering – Designed to equip you with advanced skills in computing (especially in the areas of developing and managing network systems), network engineering courses come in several flavors. Some universities offer them as specialized Master’s programs, assuming you have an appropriate technical Bachelor’s degree. In some cases, you can enter into trainee courses with workplaces that equip you with network engineering skills, with this option sometimes not requiring formal computer science training beforehand.
  • Cyber Security Engineering – With cybercrime losses exceeding $10 billion in 2022 (according to the FBI), there’s an obvious demand for people who can engineer systems designed to deter hackers. Specialized programs, such as an MSc in cyber security engineering, equip you with the ability to offer hardware security services and reverse-engineer cyber-attacks. Entry requirements vary depending on your university, though many ask for a minimum second-class degree in a subject like computer science or electronic engineering.
  • Applied Data Science – You’ll pick up on some of the technical concepts that underpin data science while studying for your BSc in Computer Science. A Master’s degree in applied data science teaches you the practical side, equipping you with the skills you need to analyze and work on complicated engineering assets. Again, a degree in a technical subject (like computer science) should be enough for most universities, with this course also offering a path into Ph.D. studies in the applied data science and data-based industrial engineering areas.

Benefits of Pursuing Engineering After BSc Computer Science

After having worked so hard to obtain your BSc in Computer Science, the question “can I do engineering after BSc Computer Science?” may not have crossed your mind. After all, you’re equipped to enter the workforce already, so you’re wondering what the benefits of further study may be. Here are three to consider.

Enhanced Career Prospects

Having a joint specialization between engineering and computer science can be your pathway to a higher salary, with specific specializations in applied data science or cyber security engineering veering into six-figure territory.

According to Glass Door, starting salaries for applied data scientists start at around $83,000, though the average is $126,586 per year. Advance in that path until you become a senior or lead data scientist and you’ll find your earnings in the $160,000 range. The same resource suggests the average base pay for a cyber security engineer is nearly as impressive, starting at $92,297 per year, though some organizations offer six-figure contracts for those who have some experience under their belts.

Specialization in a Specific Field

Though a BSc in Computer Science equips you with a ton of foundational knowledge, it can leave you feeling unfocused as potential career paths branch out in front of you. Rather than exploring every one of those branches, shifting into engineering allows you to distill (and build upon) what you already know to create a more focused knowledge base.

In addition to making you more desirable to potential employers (as we see above), a specialization makes it easier to find a job that fits your skill set. You add a layer of polish to your raw skillset, developing an understanding of where your specific talents lie and, more importantly, how you can apply them.

Opportunities for Research and Innovation

Having the skills to access better careers is one thing, but being able to contribute to the development of new technologies can make you feel like you’re making a real difference to the world. Following up your BSc in Computer Science with an engineering specialization equips you with practical knowledge (complementing your technical prowess) to give you the perfect balance for entering into the research world.

As one example, Imperial College London operates a research program that takes a data-driven approach to data science research. Applications of the tech (and ideas) that come from that program are used in fields as diverse as medicine, astrophysics, and finance, allowing researchers to create cross-industry change while working with cutting-edge tech.

Steps to Pursue an Engineering Career Post-BSc

Now that you know that the answer to “Can I do engineering after BSc Computer Science?” is a definite “yes,” there’s one more question to answer:

How?

Step 1 – Research and Choose the Right Engineering Program

Choosing the right engineering program may make you feel like you’re at the starting point of a path that branches out in a dozen directions. Each of those paths has something to offer, though you have to commit to one to become a specialist. Think about what you enjoyed while studying computer science, which, combined with an understanding of your career goals, will help you determine which path leads you toward your passion.

Once you know what you want to study (and why), evaluate the programs open to you using the curriculum offered and the reputations of the programs as your criteria for making a choice.

Step 2 – Prepare for Entrance Exams and Application Process

You’re not going to simply walk into an engineering course because you have a BSc in Computer Science, even if your graduate studies equip you with most of the skills necessary to start a post-graduate engineering course. Some institutions have entrance exams (with the previously mentioned JEE being popular), meaning you need to gather study materials and focus your efforts on passing that exam.

For universities that are happy to accept your BSc in Computer Science as proof of your ability, you still need to complete applications and file them before the appropriate deadlines. These deadlines vary depending on where you apply. For instance, you usually have until the end of June if applying for a program that accepts fall admissions in the United States.

Step 3 – Gain Relevant Work Experience

The more work experience you can get under your belt, especially when studying, the better your resume will look when you start applying for specialized computer engineering roles. Internships and co-op programs can equip you with practical knowledge of the workforce (and help you to build connections), though they’re often unpaid.

If working without pay is a problem for you, accepting part-time or freelance work in an engineering field related to your specialization is an option. Just be wary of burnout if you’re still in the process of completing your studies.

Step 4 – Network With Professionals in the Engineering Field

There’s an old saying that goes “It’s not what you know, it’s who you know.” While that isn’t always the case in engineering (merit and skills go a long way), it still helps to have connections in the field who can point you in the direction of roles and employers.

Attending industry events and conferences (even if you’re not actively looking for a job yet) allows you to hobnob with people who may prove useful when you’re trying to break into the engineering sector. Joining professional associations, such as the Association for Computing Machinery (ACM), offers resources, continuing education, and access to career centers that can help you to get ahead.

Engineer Your Path to a New Career

Computer science and engineering make for good bedfellows, with both fields being highly technical and reliant on you having strong mathematical skills. Perhaps that’s why there are so many attractive (and potentially lucrative) options for specializations, with each offering ways to apply the foundational knowledge you develop during a BSc in Computer Science.

When making your choice, start by figuring out which field grabs your interest before taking the steps described above to reach your career goals.

Related posts

Il Sole 24 Ore: Professors from all over the world for online degree courses with practical training
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Aug 3, 2024 3 min read

Source:

  • Il Sole 24 Ore, Published on July 29th, 2024 (original article in Italian).

By Filomena Greco

It is called OPIT and it was born from an idea by Riccardo Ocleppo, entrepreneur, director and founder of OPIT and second generation in the company; and Francesco Profumo, former president of Compagnia di Sanpaolo, former Minister of Education and Rector of the Polytechnic University of Turin. “We wanted to create an academic institution focused on Artificial Intelligence and the new formative paths linked to this new technological frontier”.

How did this initiative come about?

“The general idea was to propose to the market a new model of university education that was, on the one hand, very up-to-date on the topic of skills, curricula and professors, with six degree paths (two three-year Bachelor degrees and four Master degrees) in areas such as Computer Science, AI, Cybersecurity, Digital Business; on the other hand, a very practical approach linked to the needs of the industrial world. We want to bridge a gap between formal education, which is often too theoretical, and the world of work and entrepreneurship.”

What characterizes your didactic proposal?

“Ours is a proprietary teaching model, with 45 teachers recruited from all over the world who have a solid academic background but also experience in many companies. We want to offer a study path that has a strong business orientation, with the aim of immediately bringing added value to the companies. Our teaching is entirely in English, and this is a project created to be international, with the teachers coming from 20 different nationalities. Italian students last year were 35% but overall the reality is very varied.”

Can you tell us your numbers?

“We received tens of thousands of applications for the first year but we tried to be selective. We started the first two classes with a hundred students from 38 countries around the world, Italy, Europe, USA, Canada, Middle East and Africa. We aim to reach 300 students this year. We have accredited OPIT in Malta, which is the only European country other than Ireland to be native English speaking – for us, this is a very important trait. We want to offer high quality teaching but with affordable costs, around 4,500 euros per year, with completely online teaching.”

Read the full article below (in Italian):

Read the article
EFMD Global: This business school grad created own education institution
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Jul 20, 2024 4 min read

Source:


By Stephanie Mullins

Many people love to read the stories of successful business school graduates to see what they’ve achieved using the lessons, insights and connections from the programmes they’ve studied. We speak to one alumnus, Riccardo Ocleppo, who studied at top business schools including London Business School (LBS) and INSEAD, about the education institution called OPIT which he created after business school.

Please introduce yourself and your career to date. 

I am the founder of OPIT — Open Institute of Technology, a fully accredited Higher Education Institution (HEI) under the European Qualification Framework (EQF) by the MFHEA Authority. OPIT also partners with WES (World Education Services), a trusted non-profit providing verified education credential assessments (ECA) in the US and Canada for foreign degrees and certificates.  

Prior to founding OPIT, I established Docsity, a global community boasting 15 million registered university students worldwide and partnerships with over 250 Universities and Business Schools. My academic background includes an MSc in Electronics from Politecnico di Torino and an MSc in Management from London Business School. 

Why did you decide to create OPIT Open Institute of Technology? 

Higher education has a profound impact on people’s futures. Through quality higher education, people can aspire to a better and more fulfilling future.  

The mission behind OPIT is to democratise access to high-quality higher education in the fields that will be in high demand in the coming decades: Computer Science, Artificial Intelligence, Data Science, Cybersecurity, and Digital Innovation. 

Since launching my first company in the education field, I’ve engaged with countless students, partnered with hundreds of universities, and collaborated with professors and companies. Through these interactions, I’ve observed a gap between traditional university curricula and the skills demanded by today’s job market, particularly in Computer Science and Technology. 

I founded OPIT to bridge this gap by modernising education, making it affordable, and enhancing the digital learning experience. By collaborating with international professors and forging solid relationships with global companies, we are creating a dynamic online community and developing high-quality digital learning content. This approach ensures our students benefit from a flexible, cutting-edge, and stress-free learning environment. 

Why do you think an education in tech is relevant in today’s business landscape?

As depicted by the World Economic Forum’s “Future of Jobs 2023” report, the demand for skilled tech professionals remains (and will remain) robust across industries, driven by the critical role of advanced technologies in business success. 

Today’s companies require individuals who can innovate and execute complex solutions. A degree in fields like computer science, cybersecurity, data science, digital business or AI equips graduates with essential skills to thrive in this dynamic industry. 

According to the International Monetary Fund (IMF), the global tech talent shortage will exceed 85 million workers by 2030. The Korn Ferry Institute warns that this gap could result in hundreds of billions in lost revenue across the US, Europe, and Asia.  

To address this challenge, OPIT aims to democratise access to technology education. Our competency-based and applied approach, coupled with a flexible online learning experience, empowers students to progress at their own pace, demonstrating their skills as they advance.  

Read the full article below:

Read the article