Imagine that you own a business that has thousands of customers. You have data on every one of these customers, ranging from basic contact information to data about their purchasing habits. What you have is a huge dataset, and you want to extract information from that dataset in the form of patterns and insights with which you can make decisions.

You’d need a data scientist.

Data scientists specialize in shining a spotlight on the most important insights found in large datasets. They use a range of tools – from complex algorithms to artificial intelligence – to make that spotlight shine brighter. And in a world of Big Data, the data scientist’s role is more important now than ever. With these six courses, split between beginner, intermediate, and advanced levels, you put yourself in a prime position to become the data scientist that so many companies need.

Best Data Science Tutorials for Beginners

Everybody has to start somewhere, and these data science beginner tutorial options are the ideal first step on your journey into the field.

Data Science Tutorial for Beginners (Java T Point)

If you’re looking for a succinct explanation of what data science is, what it involves, and how it applies in the modern world, Java T Point’s tutorial answers the key questions. It’s structured as a long-form article rather than a set of modules or lessons, but it’s well-organized and covers all of the key points in enough depth to make it a handy primer for the data science novice.

This data science tutorial covers a range of topics, from basic explanations of the components of data science to descriptions of the types of jobs available for those who enter the field. It also digs into some of the machine learning aspects of data science, such as decision trees, so you can see how AI ties into modern data science practices.

Granted, the fact that it’s not a traditional course means there’s no community underpinning the tutorial or certification for completion. But as a primer that gives you some foundational knowledge, it’s a superb starting point.

Data Science Full Course – Learn Data Science in 10 Hours (Edureka)

Offered via YouTube, this data science tutorial makes the lofty claim of being able to teach you all you need to know about the subject in 10 hours. While that isn’t strictly true (the more complex aspects are covered superficially), it’s still a great primer for those looking to build a solid foundation in the subject.

The tutorial is a great choice for visual learners, and it covers topics like data categorization, statistics, and the data lifecycle. Charts, graphs, and other visual learning tools abound, with the constant narration helping you to understand what you’re seeing on screen.

As a full 10-hour video, the tutorial could do with being broken up into separate lessons to make it easier to keep your place. But as long as you’re happy to record time stamps (or don’t mind the full 10 hours in one sitting), the course delivers plenty of useful information.

Best Data Science Tutorials for Intermediate Learners

After completing a few of the best data science tutorials for beginners, you’re ready to get your feet wet with intermediate courses that dig into the coding that underpins data science.

Data Science with Python Tutorial (Geeksforgeeks)

Python is the programming language of choice for data scientists, as evidenced by the fact that 69% of data scientists report using Python daily. It’s no surprise, either, as Python is an extremely flexible language that’s ideal for creating the algorithms needed in data science due to its vast range of libraries. The challenge you face is twofold – figuring out how to code in Python and understanding what libraries you need to confront common data science challenges.

Geeksforgeeks offers a data science tutorial that confronts both of those challenges and helps you see how Python applies to the data science field in a practical sense. Starting with a brief introduction to the data science field (the beginner-level tutorials in this list offer more depth), it then dives into everything you need to know about Python. You’ll learn about the basics of Python, such as functions and control statements, before moving into how you can use the language for visualizing data and creating machine learning models.

It’s a highly specialized tutorial, though it’s one that’s essential for prospective data scientists, given the popularity of Python in the field. Unfortunately, there’s no certification for completion. However, it’ll equip you with so much Python knowledge that you can feel confident moving into a more advanced study without worrying about your coding chops.

Data Science and Machine Learning Essentials (Microsoft via Udemy)

Like the above course, Microsoft’s offering covers Python, albeit in far less depth. However, it stands out because it also covers a couple of other languages used commonly in data science – namely R and Azure Machine Learning. As a result, the course is an excellent choice for intermediate data scientists who want to get to grips with the main three programming languages they’ll likely use in the field.

It’s a five-week course, with Microsoft recommending between three and four hours of learning per week, and it’s delivered in English. Each weekly module is capped with a quiz that tests your knowledge. The modules cover everything from data science basics to creating machine learning models in Azure Machine Learning.

Of course, the biggest benefit of this course (aside from the content) is the Microsoft-approved certification you get at the end. Any employer who sees Microsoft on your CV will sit up and take notice. Still, you’ll need to build on what you learn here with a more advanced data science tutorial, ideally one that covers more real-world applications of working with data.

Best Data Science Tutorials for Advanced Learners

Once you’re secure in your foundational knowledge and you have a good idea of how to apply data science practices, you’re ready to step into a more advanced data science tutorial. Here are two options.

Data Science Tutorial – Learn Data Science From Scratch (DataFlair)

Think of DataFlair’s main data science tutorial page as a hub world in a video game. There are dozens of different directions in which to take your studying, and you’re in complete control of where you go and what you learn. The page hosts over 370 tutorials (free of charge) that cover everything from the basics of data science to using data mining and Python to parse through massive data sets.

The sheer depth of coverage makes this set of tutorials ideal for the advanced learner. The more basic sides of the course can fill in any knowledge gaps that weren’t covered in previous tutorials you’ve taken. And on the more advanced side, you’ll be exposed to real-world examples that show you how to apply your theoretical knowledge in a practical environment. There’s even a set of quizzes that you can use to test your understanding of what you read.

There are some drawbacks, namely that this data science tutorial doesn’t offer a certificate and is less interactive than many paid courses. However, self-paced learners who thrive when presented with pages of theoretical knowledge will find almost everything they need to know about data science in this collection.

MicroMasters® Program in Statistics and Data Science (Massachusetts Institute of Technology)

By the time you’re at the advanced stage of learning data science, you’ll probably want an official certification to take pride of place on your CV. This mini-Master’s degree comes from the Massachusetts Institute of Technology (MIT), which is one of the world’s leading technology and engineering schools.

The course lasts for one year and two months, with between 10 and 14 hours of study required per week, making it a choice only for those who can commit to a part-time consistent learning schedule. It’s also not a free data science tutorial, as you’ll have to pay £1,210 (approx. €1,401) for the program.

If you can vault those hurdles, you get a graduate-level course that teaches you how to develop the machine learning models used in modern data science. Plus, having the letters “MIT” on your course certification (and the networking opportunities that come with learning from some of the institutions leading professors) makes this course even more valuable.

Find the Best Data Science Tutorials for Your Skill Level

Whether you’re taking your first tentative steps into the world of data science or you’re an advanced learner looking to brush up your skills, there’s a data science tutorial out there for you. The six highlighted in this article represent the best data science tutorials available (two for each skill level) on the web.

Let’s close by answering a key question – why complete one of these tutorials?

Precedence Research has the answer, stating that the data science field will enjoy a compound annual growth rate (CAGR) of 16.43% between 2022 and 2030. Rapid growth means more job opportunities (and higher salaries) for those with data science skills. Use these tutorials to build your skill base before shifting your career focus to a field that looks set to explode as Big Data becomes more crucial to how companies operate.

Related posts

The Yuan: AI is childlike in its capabilities, so why do so many people fear it?
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Nov 8, 2024 6 min read

Source:

  • The Yuan, Published on October 25th, 2024.

By Zorina Alliata

Artificial intelligence is a classic example of a mismatch between perceptions and reality, as people tend to overlook its positive aspects and fear it far more than what is warranted by its actual capabilities, argues AI strategist and professor Zorina Alliata.

ALEXANDRIA, VIRGINIA – In recent years, artificial intelligence (AI) has grown and developed into something much bigger than most people could have ever expected. Jokes about robots living among humans no longer seem so harmless, and the average person began to develop a new awareness of AI and all its uses. Unfortunately, however – as is often a human tendency – people became hyper-fixated on the negative aspects of AI, often forgetting about all the good it can do. One should therefore take a step back and remember that humanity is still only in the very early stages of developing real intelligence outside of the human brain, and so at this point AI is almost like a small child that humans are raising.

AI is still developing, growing, and adapting, and like any new tech it has its drawbacks. At one point, people had fears and doubts about electricity, calculators, and mobile phones – but now these have become ubiquitous aspects of everyday life, and it is not difficult to imagine a future in which this is the case for AI as well.

The development of AI certainly comes with relevant and real concerns that must be addressed – such as its controversial role in education, the potential job losses it might lead to, and its bias and inaccuracies. For every fear, however, there is also a ray of hope, and that is largely thanks to people and their ingenuity.

Looking at education, many educators around the world are worried about recent developments in AI. The frequently discussed ChatGPT – which is now on its fourth version – is a major red flag for many, causing concerns around plagiarism and creating fears that it will lead to the end of writing as people know it. This is one of the main factors that has increased the pessimistic reporting about AI that one so often sees in the media.

However, when one actually considers ChatGPT in its current state, it is safe to say that these fears are probably overblown. Can ChatGPT really replace the human mind, which is capable of so much that AI cannot replicate? As for educators, instead of assuming that all their students will want to cheat, they should instead consider the options for taking advantage of new tech to enhance the learning experience. Most people now know the tell-tale signs for identifying something that ChatGPT has written. Excessive use of numbered lists, repetitive language and poor comparison skills are just three ways to tell if a piece of writing is legitimate or if a bot is behind it. This author personally encourages the use of AI in the classes I teach. This is because it is better for students to understand what AI can do and how to use it as a tool in their learning instead of avoiding and fearing it, or being discouraged from using it no matter the circumstances.

Educators should therefore reframe the idea of ChatGPT in their minds, have open discussions with students about its uses, and help them understand that it is actually just another tool to help them learn more efficiently – and not a replacement for their own thoughts and words. Such frank discussions help students develop their critical thinking skills and start understanding their own influence on ChatGPT and other AI-powered tools.

By developing one’s understanding of AI’s actual capabilities, one can begin to understand its uses in everyday life. Some would have people believe that this means countless jobs will inevitably become obsolete, but that is not entirely true. Even if AI does replace some jobs, it will still need industry experts to guide it, meaning that entirely new jobs are being created at the same time as some older jobs are disappearing.

Adapting to AI is a new challenge for most industries, and it is certainly daunting at times. The reality, however, is that AI is not here to steal people’s jobs. If anything, it will change the nature of some jobs and may even improve them by making human workers more efficient and productive. If AI is to be a truly useful tool, it will still need humans. One should remember that humans working alongside AI and using it as a tool is key, because in most cases AI cannot do the job of a person by itself.

Is AI biased?

Why should one view AI as a tool and not a replacement? The main reason is because AI itself is still learning, and AI-powered tools such as ChatGPT do not understand bias. As a result, whenever ChatGPT is asked a question it will pull information from anywhere, and so it can easily repeat old biases. AI is learning from previous data, much of which is biased or out of date. Data about home ownership and mortgages, e.g., are often biased because non-white people in the United States could not get a mortgage until after the 1960s. The effect on data due to this lending discrimination is only now being fully understood.

AI is certainly biased at times, but that stems from human bias. Again, this just reinforces the need for humans to be in control of AI. AI is like a young child in that it is still absorbing what is happening around it. People must therefore not fear it, but instead guide it in the right direction.

For AI to be used as a tool, it must be treated as such. If one wanted to build a house, one would not expect one’s tools to be able to do the job alone – and AI must be viewed through a similar lens. By acknowledging this aspect of AI and taking control of humans’ role in its development, the world would be better placed to reap the benefits and quash the fears associated with AI. One should therefore not assume that all the doom and gloom one reads about AI is exactly as it seems. Instead, people should try experimenting with it and learning from it, and maybe soon they will realize that it was the best thing that could have happened to humanity.

Read the full article below:

Read the article
The European Business Review: Adapting to the Digital Age: Teaching Blockchain and Cloud Computing
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Nov 6, 2024 6 min read

Source:


By Lokesh Vij

Lokesh Vij is a Professor of BSc in Modern Computer Science & MSc in Applied Data Science & AI at Open Institute of Technology. With over 20 years of experience in cloud computing infrastructure, cybersecurity and cloud development, Professor Vij is an expert in all things related to data and modern computer science.

In today’s rapidly evolving technological landscape, the fields of blockchain and cloud computing are transforming industries, from finance to healthcare, and creating new opportunities for innovation. Integrating these technologies into education is not merely a trend but a necessity to equip students with the skills they need to thrive in the future workforce. Though both technologies are independently powerful, their potential for innovation and disruption is amplified when combined. This article explores the pressing questions surrounding the inclusion of blockchain and cloud computing in education, providing a comprehensive overview of their significance, benefits, and challenges.

The Technological Edge and Future Outlook

Cloud computing has revolutionized how businesses and individuals’ access and manage data and applications. Benefits like scalability, cost efficiency (including eliminating capital expenditure – CapEx), rapid innovation, and experimentation enable businesses to develop and deploy new applications and services quickly without the constraints of traditional on-premises infrastructure – thanks to managed services where cloud providers manage the operating system, runtime, and middleware, allowing businesses to focus on development and innovation. According to Statista, the cloud computing market is projected to reach a significant size of Euro 250 billion or even higher by 2028 (from Euro 110 billion in 2024), with a substantial Compound Annual Growth Rate (CAGR) of 22.78%. The widespread adoption of cloud computing by businesses of all sizes, coupled with the increasing demand for cloud-based services and applications, fuels the need for cloud computing professionals.

Blockchain, a distributed ledger technology, has paved the way by providing a secure, transparent, and tamper-proof way to record transactions (highly resistant to hacking and fraud). In 2021, European blockchain startups raised $1.5 billion in funding, indicating strong interest and growth potential. Reports suggest the European blockchain market could reach $39 billion by 2026, with a significant CAGR of over 47%. This growth is fueled by increasing adoption in sectors like finance, supply chain, and healthcare.

Addressing the Skills Gap

Reports from the World Economic Forum indicate that 85 million jobs may be displaced by a shift in the division of labor between humans and machines by 2025. However, 97 million new roles may emerge that are more adapted to the new division of labor between humans, machines, and algorithms, many of which will require proficiency in cloud computing and blockchain.

Furthermore, the World Economic Forum predicts that by 2027, 10% of the global GDP will be tokenized and stored on the blockchain. This massive shift means a surge in demand for blockchain professionals across various industries. Consider the implications of 10% of the global GDP being on the blockchain: it translates to a massive need for people who can build, secure, and manage these systems. We’re talking about potentially millions of jobs worldwide.

The European Blockchain Services Infrastructure (EBSI), an EU initiative, aims to deploy cross-border blockchain services across Europe, focusing on areas like digital identity, trusted data sharing, and diploma management. The EU’s MiCA (Crypto-Asset Regulation) regulation, expected to be fully implemented by 2025, will provide a clear legal framework for crypto-assets, fostering innovation and investment in the blockchain space. The projected growth and supportive regulatory environment point to a rising demand for blockchain professionals in Europe. Developing skills related to EBSI and its applications could be highly advantageous, given its potential impact on public sector blockchain adoption. Understanding the MiCA regulation will be crucial for blockchain roles related to crypto-assets and decentralized finance (DeFi).

Furthermore, European businesses are rapidly adopting digital technologies, with cloud computing as a core component of this transformation. GDPR (Data Protection Regulations) and other data protection laws push businesses to adopt secure and compliant cloud solutions. Many European countries invest heavily in cloud infrastructure and promote cloud adoption across various sectors. Artificial intelligence and machine learning will be deeply integrated into cloud platforms, enabling smarter automation, advanced analytics, and more efficient operations. This allows developers to focus on building applications without managing servers, leading to faster development cycles and increased scalability. Processing data closer to the source (like on devices or local servers) will become crucial for applications requiring real-time responses, such as IoT and autonomous vehicles.

The projected growth indicates a strong and continuous demand for blockchain and cloud professionals in Europe and worldwide. As we stand at the “crossroads of infinity,” there is a significant skill shortage, which will likely increase with the rapid adoption of these technologies. A 2023 study by SoftwareOne found that 95% of businesses globally face a cloud skills gap. Specific skills in high demand include cloud security, cloud-native development, and expertise in leading cloud platforms like AWS, Azure, and Google Cloud. The European Commission’s Digital Economy and Society Index (DESI) highlights a need for improved digital skills in areas like blockchain to support the EU’s digital transformation goals. A 2023 report by CasperLabs found that 90% of businesses in the US, UK, and China adopt blockchain, but knowledge gaps and interoperability challenges persist.

The Role of Educational Institutions

This surge in demand necessitates a corresponding increase in qualified individuals who can design, implement, and manage cloud-based and blockchain solutions. Educational institutions have a critical role to play in bridging this widening skills gap and ensuring a pipeline of talent ready to meet the demands of this burgeoning industry.

To effectively prepare the next generation of cloud computing and blockchain experts, educational institutions need to adopt a multi-pronged approach. This includes enhancing curricula with specialized programs, integrating cloud and blockchain concepts into existing courses, and providing hands-on experience with leading technology platforms.

Furthermore, investing in faculty development to ensure they possess up-to-date knowledge and expertise is crucial. Collaboration with industry partners through internships, co-teach programs, joint research projects, and mentorship programs can provide students with invaluable real-world experience and insights.

Beyond formal education, fostering a culture of lifelong learning is essential. Offering continuing education courses, boot camps, and online resources enables professionals to upskill or reskill and stay abreast of the latest advancements in cloud computing. Actively promoting awareness of career paths and opportunities in this field and facilitating connections with potential employers can empower students to thrive in the dynamic and evolving landscape of cloud computing and blockchain technologies.

By taking these steps, educational institutions can effectively prepare the young generation to fill the skills gap and thrive in the rapidly evolving world of cloud computing and blockchain.

Read the full article below:

Read the article