As a well-known programming language, Python dominates the data science field. Its prominence in the industry represents the main reason why so many job offers include Python skills as a hard requirement.

Of course, all of the hype around Python has practical ramifications. This programming language is suitable for people without a programming background. If you have a sufficient grasp of technology, chances are you’ll get how Python works in a few weeks.

Besides being beginner-friendly, Python is practically built for math and statistical analysis. Plus, data visualization becomes nearly effortless when you use specific Python libraries dedicated to the task.

The point is that Python makes numerous data science tasks and operations easier. If you’re interested in data science, learning this versatile programming language will take your professional development to a new level.

Fortunately, you can find plenty of courses teaching everything from the basics to advanced functions in Python. Let’s look at the best Python data science tutorial and course options.

Factors to Consider When Choosing a Python Data Science Course

Before you start a particular course, it would be best to consider the specifics. The criteria that should guide your decision include:

  • The content of the course: Some courses will be introductory, while others will offer advanced lessons. You should start with a course that aligns with your proficiency level.
  • Instructor’s expertise: Ideally, you’ll want an industry expert to teach you about Python. Experienced lecturers or proven professionals will know all of the ins and outs, and they’ll be able to transfer that knowledge to you.
  • Course duration and flexibility: If you’re looking for a course, you don’t want an experience that will last an entire year. On the other hand, you shouldn’t expect too much from an hour-long course. Additionally, the course structure should be flexible enough to allow you to complete it at your own pace.
  • Practical projects and applications: Python is a living programming language that sees plenty of use in the real world. On that note, the course you take should offer a hands-on experience and show you how to apply your new knowledge in practice.
  • Course reviews and ratings: Although this shouldn’t be your primary clue when making a decision, taking a look at what others say about the course certainly won’t hurt. You’ll want to stay away from courses with mostly negative reviews, especially if the reviewers make unsubstantiated claims.
  • Pricing and value: Course pricing may vary from ludicrously expensive to free. While our list doesn’t include any outrageously overpriced courses, you’ll find a quality free one in there. The bottom line here is straightforward: Does the course fit in with your budget and what do you get for the price?

Top Python Data Science Courses and Tutorials

ILX Group – Python E-Learning

This Python data science course deals with the basic functionality of the programming language and teaches you how to apply it in practice. It contains in-depth information about command running, dictionaries, methods, and shell scripting. No final exam is necessary to complete the course.

Key Topics

  • The basics of Python programming
  • File and data operations
  • Logging and test infrastructure
  • Conditional statements
  • Networking
  • Shell scripting
  • Django web framework

Instructor’s Background

Information about the instructor for this course isn’t available on ILX Group.

Course Duration and Format

The course is in e-learning format and is delivered entirely online. It will take you about eight hours to complete. Instead of a final exam, you’ll complete the course by submitting the required project that must meet specific set criteria.

Pricing and Enrollment

Enrolling in this course will cost €450 +VAT. You won’t need to fulfill any additional requirements to make a start. Paying the one-time fee will grant you a full year of access to the course resources.

Pros

  • Provides a solid foundation for Python programming
  • No limitations on enrollment or availability
  • Offers practical knowledge and projects

Cons

  • E-learning tools used throughout the course aren’t defined
  • No information about the instructor or their credentials

Python Institute – Data Analysis Essentials With Python

The Python Institute is a group devoted to Python education. The Data Analysis Essentials with Python is only one of the courses this institution provides. It’s an intermediate-level program focused on data analysis using the tools within the Python programming language.

Key Topics

  • Data analysis
  • Algorithmic and analytical thinking
  • Data visualization
  • Statistics
  • Data mining and modeling
  • Programming
  • Data-based decision-making

Instructor’s Background

No instructor information can be found on the Python Institute site regarding this particular course. However, it’s worth mentioning that the institute is run by industry experts with substantial experience in the IT sector. These experts are also responsible for the institute courses.

Course Duration and Format

The Data Analysis Essentials with Python course will last for up to six weeks, provided you devote about eight hours weekly to studying the material. The course is delivered online.

Pricing and Enrollment

One of the greatest advantages of this course is its pricing: Data Analysis Essentials with Python is completely free. However, this course isn’t for beginners. You’ll need previous knowledge of the key concepts in Python programming. The Python Institute recommends completing their beginner courses or coming into this program with some experience.

Pros

  • Course designed by industry professionals
  • Free for all users
  • May serve as a preparatory course for Python Certified Associate in Data Analytics (PCAD) certification

Cons

  • No information about the lecturer
  • Exact delivery methods aren’t specified

Python-Course – Fundamental Python Course

The Fundamental Python Course is designed as a comprehensive introduction to programming methods in Python. The course will take you through the fundamentals of the programming language and include practical solutions in the Python environment.

Key Topics

  • Python introductory lessons
  • Script editing and execution
  • Working in the Python shell
  • Expressions, operators, assignments, and variables
  • Dictionaries, stacks, loops, and lists
  • Handling files and exceptions
  • Conditional statements
  • Packages and modules

Instructor’s Background

The instructor for live courses is Bernd Klein. A Python expert with a Saarland University diploma in Computer Science, specializing in computer languages, Klein has taught at the Saarland University, EWH, Koblenz, and the University of Freiburg, where he still holds a teaching position.

Klein is also the founder of the programming language teaching platform, Bodenseo.

Course Duration and Format

The course lasts for five days and includes a live class format. While Klein usually holds classes in person, courses are currently provided online. To participate on this course, you’ll need a network-ready computer with a microphone. No additional software is needed.

Pricing and Enrollment

The on-site variant of the course costs €1,450 per day, while open classes start from €349 daily. There are no other requirements for the course.

Pros

  • Taught by an experienced lecturer
  • Offers a complete coverage of Python-related subjects
  • Advanced optional topics

Cons

  • Very pricey compared to the competitors
  • Doesn’t provide a certificate

Additional Resources for Mastering Python Data Science

If you want an alternative to an actual Python data science course, you may wish to turn to other resources that will help you master the subject. In particular, these would be books and digital resources like forums, eBooks, podcasts, YouTube channels, websites, and blogs.

For some of the best Python forums and online communities, check out the following:

Great books on Python include:

  • Head-First Python, by Paul Barry
  • Think Python, by Allen B. Downey
  • Learn Python 3 the Hard Way, by Zed A. Shaw
  • Python Crash Course, by Eric Matthes

If printed media isn’t your style, you can find an excellent list of free Python eBooks on Codeburst.io.

On the other hand, you might not want to read too much while learning Python. In that case, you’ll be glad to learn that there are numerous podcasts on the subject that you can tune in to right now:

Unsurprisingly, YouTube also has plenty of Python data science course and tutorial channels. Here are our top picks:

  • The New Boston
  • Sentdex
  • Real Python
  • PyCon – This isn’t a particular YouTube channel, but rather a search query. Browse the search results on YouTube, and you’ll find videos for Python-dedicated conferences from around the world.
  • Michael Kennedy

Finally, there’s an abundance of blogs and websites dedicated to Python resources and knowledge:

Learn to Program in Python Like a Pro

The internet is full of quality Python data science tutorial and course pages. You can find free and premium resources to hone your skills in the programming language or get familiar with the fundamental concepts.

Whichever resource type you choose, rest assured that learning practical Python skills will be a valuable addition to your resume. After all, data science is a constantly developing field in which expanding your knowledge base and skillset can only be a huge plus. If you’ve found a program you like in this article, don’t hesitate to jump right into it and expand your horizons.

Related posts

Agenda Digitale: Regenerative Business – The Future of Business Is Net-Positive
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Dec 8, 2025 5 min read

Source:


The net-positive model transcends traditional sustainability by aiming to generate more value than is consumed. Blockchain, AI, and IoT enable scalable circular models. Case studies demonstrate how profitability and positive impact combine to regenerate business and the environment.

By Francesco Derchi, Professor and Area Chair in Digital Business @ OPIT – Open Institute of Technology

In recent years, the word ” sustainability ” has become a firm fixture in the corporate lexicon. However, simply “doing no harm” is no longer enough: the climate crisis , social inequalities , and the erosion of natural resources require a change of pace. This is where the net-positive paradigm comes in , a model that isn’t content to simply reduce negative impacts, but aims to generate more social and environmental value than is consumed.

This isn’t about philanthropy, nor is it about reputational makeovers: net-positive is a strategic approach that intertwines economics, technology, and corporate culture. Within this framework, digitalization becomes an essential lever, capable of enabling regenerative models through circular platforms and exponential technologies.

Blockchain, AI, and IoT: The Technological Triad of Regeneration

Blockchain, Artificial Intelligence, and the Internet of Things represent the technological triad that makes this paradigm shift possible. Each addresses a critical point in regeneration.

Blockchain guarantees the traceability of material flows and product life cycles, allowing a regenerated dress or a bottle collected at sea to tell their story in a transparent and verifiable way.

Artificial Intelligence optimizes recovery and redistribution chains, predicting supply and demand, reducing waste and improving the efficiency of circular processes .

Finally, IoT enables real-time monitoring, from sensors installed at recycling plants to sharing mobility platforms, returning granular data for quick, informed decisions.

These integrated technologies allow us to move beyond linear vision and enable systems in which value is continuously regenerated.

New business models: from product-as-a-service to incentive tokens

Digital regeneration is n’t limited to the technological dimension; it’s redefining business models. More and more companies are adopting product-as-a-service approaches , transforming goods into services: from technical clothing rentals to pay-per-use for industrial machinery. This approach reduces resource consumption and encourages modular design, designed for reuse.

At the same time, circular marketplaces create ecosystems where materials, components, and products find new life. No longer waste, but input for other production processes. The logic of scarcity is overturned in an economy of regenerated abundance.

To complete the picture, incentive tokens — digital tools that reward virtuous behavior, from collecting plastic from the sea to reusing used clothing — activate global communities and catalyze private capital for regeneration.

Measuring Impact: Integrated Metrics for Net-Positiveness

One of the main obstacles to the widespread adoption of net-positive models is the difficulty of measuring their impact. Traditional profit-focused accounting systems are not enough. They need to be combined with integrated metrics that combine ESG and ROI, such as impact-weighted accounting or innovative indicators like lifetime carbon savings.

In this way, companies can validate the scalability of their models and attract investors who are increasingly attentive to financial returns that go hand in hand with social and environmental returns.

Case studies: RePlanet Energy, RIFO, and Ogyre

Concrete examples demonstrate how the combination of circular platforms and exponential technologies can generate real value. RePlanet Energy has defined its Massive Transformative Purpose as “Enabling Regeneration” and is now providing sustainable energy to Nigerian schools and hospitals, thanks in part to transparent blockchain-based supply chains and the active contribution of employees. RIFO, a Tuscan circular fashion brand, regenerates textile waste into new clothing, supporting local artisans and promoting workplace inclusion, with transparency in the production process as a distinctive feature and driver of loyalty. Ogyre incentivizes fishermen to collect plastic during their fishing trips; the recovered material is digitally tracked and transformed into new products, while the global community participates through tokens and environmental compensation programs.

These cases demonstrate how regeneration and profitability are not contradictory, but can actually feed off each other, strengthening the competitiveness of businesses.

From Net Zero to Net Positive: The Role of Massive Transformative Purpose

The crucial point lies in the distinction between sustainability and regeneration. The former aims for net zero, that is, reducing the impact until it is completely neutralized. The latter goes further, aiming for a net positive, capable of giving back more than it consumes.

This shift in perspective requires a strong Massive Transformative Purpose: an inspiring and shared goal that guides strategic choices, preventing technology from becoming a sterile end. Without this level of intentionality, even the most advanced tools risk turning into gadgets with no impact.

Regenerating business also means regenerating skills to train a new generation of professionals capable not only of using technologies but also of directing them towards regenerative business models. From this perspective, training becomes the first step in a transformation that is simultaneously cultural, economic, and social.

The Regenerative Future: Technology, Skills, and Shared Value

Digital regeneration is not an abstract concept, but a concrete practice already being tested by companies in Europe and around the world. It’s an opportunity for businesses to redefine their role, moving from mere economic operators to drivers of net-positive value for society and the environment.

The combination of blockchainAI, and IoT with circular product-as-a-service models, marketplaces, and incentive tokens can enable scalable and sustainable regenerative ecosystems. The future of business isn’t just measured in terms of margins, but in the ability to leave the world better than we found it.

Read the full article below (in Italian):

Read the article
Raconteur: AI on your terms – meet the enterprise-ready AI operating model
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Nov 18, 2025 5 min read

Source:

  • Raconteur, published on November 06th, 2025

What is the AI technology operating model – and why does it matter? A well-designed AI operating model provides the structure, governance and cultural alignment needed to turn pilot projects into enterprise-wide transformation

By Duncan Jefferies

Many firms have conducted successful Artificial Intelligence (AI) pilot projects, but scaling them across departments and workflows remains a challenge. Inference costs, data silos, talent gaps and poor alignment with business strategy are just some of the issues that leave organisations trapped in pilot purgatory. This inability to scale successful experiments means AI’s potential for improving enterprise efficiency, decision-making and innovation isn’t fully realised. So what’s the solution?

Although it’s not a magic bullet, an AI operating model is really the foundation for scaling pilot projects up to enterprise-wide deployments. Essentially it’s a structured framework that defines how the organisation develops, deploys and governs AI. By bringing together infrastructure, data, people, and governance in a flexible and secure way, it ensures that AI delivers value at scale while remaining ethical and compliant.

“A successful AI proof-of-concept is like building a single race car that can go fast,” says Professor Yu Xiong, chair of business analytics at the UK-based Surrey Business School. “An efficient AI technology operations model, however, is the entire system – the processes, tools, and team structures – for continuously manufacturing, maintaining, and safely operating an entire fleet of cars.”

But while the importance of this framework is clear, how should enterprises establish and embed it?

“It begins with a clear strategy that defines objectives, desired outcomes, and measurable success criteria, such as model performance, bias detection, and regulatory compliance metrics,” says Professor Azadeh Haratiannezhadi, co-founder of generative AI company Taktify and professor of generative AI in cybersecurity at OPIT – the Open Institute of Technology.

Platforms, tools and MLOps pipelines that enable models to be deployed, monitored and scaled in a safe and efficient way are also essential in practical terms.

“Tools and infrastructure must also be selected with transparency, cost, and governance in mind,” says Efrain Ruh, continental chief technology officer for Europe at Digitate. “Crucially, organisations need to continuously monitor the evolving AI landscape and adapt their models to new capabilities and market offerings.”

An open approach

The most effective AI operating models are also founded on openness, interoperability and modularity. Open source platforms and tools provide greater control over data, deployment environments and costs, for example. These characteristics can help enterprises to avoid vendor lock-in, successfully align AI to business culture and values, and embed it safely into cross-department workflows.

“Modularity and platformisation…avoids building isolated ‘silos’ for each project,” explains professor Xiong. “Instead, it provides a shared, reusable ‘AI platform’ that integrates toolchains for data preparation, model training, deployment, monitoring, and retraining. This drastically improves efficiency and reduces the cost of redundant work.”

A strong data strategy is equally vital for ensuring high-quality performance and reducing bias. Ideally, the AI operating model should be cloud and LLM agnostic too.

“This allows organisations to coordinate and orchestrate AI agents from various sources, whether that’s internal or 3rd party,” says Babak Hodjat, global chief technology officer of AI at Cognizant. “The interoperability also means businesses can adopt an agile iterative process for AI projects that is guided by measuring efficiency, productivity, and quality gains, while guaranteeing trust and safety are built into all elements of design and implementation.”

A robust AI operating model should feature clear objectives for compliance, security and data privacy, as well as accountability structures. Richard Corbridge, chief information officer of Segro, advises organisations to: “Start small with well-scoped pilots that solve real pain points, then bake in repeatable patterns, data contracts, test harnesses, explainability checks and rollback plans, so learning can be scaled without multiplying risk. If you don’t codify how models are approved, deployed, monitored and retired, you won’t get past pilot purgatory.”

Of course, technology alone can’t drive successful AI adoption at scale: the right skills and culture are also essential for embedding AI across the enterprise.

“Multidisciplinary teams that combine technical expertise in AI, security, and governance with deep business knowledge create a foundation for sustainable adoption,” says Professor Haratiannezhadi. “Ongoing training ensures staff acquire advanced AI skills while understanding associated risks and responsibilities.”

Ultimately, an AI operating model is the playbook that enables an enterprise to use AI responsibly and effectively at scale. By drawing together governance, technological infrastructure, cultural change and open collaboration, it supports the shift from isolated experiments to the kind of sustainable AI capability that can drive competitive advantage.

In other words, it’s the foundation for turning ambition into reality, and finally escaping pilot purgatory for good.

 

Read the full article below:

Read the article