Algorithms are the backbone behind technology that have helped establish some of the world’s most famous companies. Software giants like Google, beverage giants Coca Cola and many other organizations utilize proprietary algorithms to improve their services and enhance customer experience. Algorithms are an inseparable part of the technology behind organization as they help improve security, product or service recommendations, and increase sales.
Knowing the benefits of algorithms is useful, but you might also be interested to know what makes them so advantageous. As such, you’re probably asking: “What is an algorithm?” Here’s the most common algorithm definition: an algorithm is a set of procedures and rules a computer follows to solve a problem.
In addition to the meaning of the word “algorithm,” this article will also cover the key types and characteristics of algorithms, as well as their applications.
Types of Algorithms and Design Techniques
One of the main reasons people rely on algorithms is that they offer a principled and structured means to represent a problem on a computer.
Recursive Algorithms
Recursive algorithms are critical for solving many problems. The core idea behind recursive algorithms is to use functions that call themselves on smaller chunks of the problem.
Divide and Conquer Algorithms
Divide and conquer algorithms are similar to recursive algorithms. They divide a large problem into smaller units. Algorithms solve each smaller component before combining them to tackle the original, large problem.
Greedy Algorithms
A greedy algorithm looks for solutions based on benefits. More specifically, it resolves problems in sections by determining how many benefits it can extract by analyzing a certain section. The more benefits it has, the more likely it is to solve a problem, hence the term greedy.
Dynamic Programming Algorithms
Dynamic programming algorithms follow a similar approach to recursive and divide and conquer algorithms. First, they break down a complex problem into smaller pieces. Next, it solves each smaller piece once and saves the solution for later use instead of computing it.
Backtracking Algorithms
After dividing a problem, an algorithm may have trouble moving forward to find a solution. If that’s the case, a backtracking algorithm can return to parts of the problem it has already solved until it determines a way forward that can overcome the setback.
Brute Force Algorithms
Brute force algorithms try every possible solution until they determine the best one. Brute force algorithms are simpler, but the solution they find might not be as good or elegant as those found by the other types of algorithms.
Algorithm Analysis and Optimization
Digital transformation remains one of the biggest challenges for businesses in 2023. Algorithms can facilitate the transition through careful analysis and optimization.
Time Complexity
The time complexity of an algorithm refers to how long you need to execute a certain algorithm. A number of factors determine time complexity, but the algorithm’s input length is the most important consideration.
Space Complexity
Before you can run an algorithm, you need to make sure your device has enough memory. The amount of memory required for executing an algorithm is known as space complexity.
Trade-Offs
Solving a problem with an algorithm in C or any other programming language is about making compromises. In other words, the system often makes trade-offs between the time and space available.
For example, an algorithm can use less space, but this extends the time it takes to solve a problem. Alternatively, it can take up a lot of space to address an issue faster.
Optimization Techniques
Algorithms generally work great out of the box, but they sometimes fail to deliver the desired results. In these cases, you can implement a slew of optimization techniques to make them more effective.
Memorization
You generally use memorization if you wish to elevate the efficacy of a recursive algorithm. The technique rewrites algorithms and stores them in arrays. The main reason memorization is so powerful is that it eliminates the need to calculate results multiple times.
Parallelization
As the name suggests, parallelization is the ability of algorithms to perform operations simultaneously. This accelerates task completion and is normally utilized when you have a lot of memory on your device.
Heuristics
Heuristic algorithms (a.k.a. heuristics) are algorithms used to speed up problem-solving. They generally target non-deterministic polynomial-time (NP) problems.
Approximation Algorithms
Another way to solve a problem if you’re short on time is to incorporate an approximation algorithm. Rather than provide a 100% optimal solution and risk taking longer, you use this algorithm to get approximate solutions. From there, you can calculate how far away they are from the optimal solution.
Pruning
Algorithms sometimes analyze unnecessary data, slowing down your task completion. A great way to expedite the process is to utilize pruning. This compression method removes unwanted information by shrinking algorithm decision trees.
Algorithm Applications and Challenges
Thanks to this introduction to algorithm, you’ll no longer wonder: “What is an algorithm, and what are the different types?” Now it’s time to go through the most significant applications and challenges of algorithms.
Sorting Algorithms
Sorting algorithms arrange elements in a series to help solve complex issues faster. There are different types of sorting, including linear, insertion, and bubble sorting. They’re generally used for exploring databases and virtual search spaces.
Searching Algorithms
An algorithm in C or other programming languages can be used as a searching algorithm. They allow you to identify a small item in a large group of related elements.
Graph Algorithms
Graph algorithms are just as practical, if not more practical, than other types. Graphs consist of nodes and edges, where each edge connects two nodes.
There are numerous real-life applications of graph algorithms. For instance, you might have wondered how engineers solve problems regarding wireless networks or city traffic. The answer lies in using graph algorithms.
The same goes for social media sites, such as Facebook. Algorithms on such platforms contain nodes, which represent key information, like names and genders and edges that represent the relationships or dependencies between them.
Cryptography Algorithms
When creating an account on some websites, the platform can generate a random password for you. It’s usually stronger than custom-made codes, thanks to cryptography algorithms. They can scramble digital text and turn it into an unreadable string. Many organizations use this method to protect their data and prevent unauthorized access.
Machine Learning Algorithms
Over 70% of enterprises prioritize machine learning applications. To implement their ideas, they rely on machine learning algorithms. They’re particularly useful for financial institutions because they can predict future trends.
Famous Algorithm Challenges
Many organizations struggle to adopt algorithms, be it an algorithm in data structure or computer science. The reason being, algorithms present several challenges:
- Opacity – You can’t take a closer look at the inside of an algorithm. Only the end result is visible, which is why it’s difficult to understand an algorithm.
- Heterogeneity – Most algorithms are heterogeneous, behaving differently from one another. This makes them even more complex.
- Dependency – Each algorithm comes with the abovementioned time and space restrictions.
Algorithm Ethics, Fairness, and Social Impact
When discussing critical characteristics of algorithms, it’s important to highlight the main concerns surrounding this technology.
Bias in Algorithms
Algorithms aren’t intrinsically biased unless the developer injects their personal biases into the design. If so, getting impartial results from an algorithm is highly unlikely.
Transparency and Explainability
Knowing only the consequences of algorithms prevents us from explaining them in detail. A transparent algorithm enables a user to view and understand its different operations. In contrast, explainability of an algorithm relates to its ability to provide reasons for the decisions it makes.
Privacy and Security
Some algorithms require end users to share private information. If cyber criminals hack the system, they can easily steal the data.
Algorithm Accessibility and Inclusivity
Limited explainability hinders access to algorithms. Likewise, it’s hard to include different viewpoints and characteristics in an algorithm, especially if it is biased.
Algorithm Trust and Confidence
No algorithm is omnipotent. Claiming otherwise makes it untrustworthy – the best way to prevent this is for the algorithm to state its limitations.
Algorithm Social Impact
Algorithms impact almost every area of life including politics, economic and healthcare decisions, marketing, transportation, social media and Internet, and society and culture in general.
Algorithm Sustainability and Environmental Impact
Contrary to popular belief, algorithms aren’t very sustainable. The extraction of materials to make computers that power algorithms is a major polluter.
Future of Algorithms
Algorithms are already advanced, but what does the future hold for this technology? Here are a few potential applications and types of future algorithms:
- Quantum Algorithms – Quantum algorithms are expected to run on quantum computers to achieve unprecedented speeds and efficiency.
- Artificial Intelligence and Machine Learning – AI and machine learning algorithms can help a computer develop human-like cognitive qualities via learning from its environment and experiences.
- Algorithmic Fairness and Ethics – Considering the aforementioned challenges of algorithms, developers are expected to improve the technology. It may become more ethical with fewer privacy violations and accessibility issues.
Smart, Ethical Implementation Is the Difference-Maker
Understanding algorithms is crucial if you want to implement them correctly and ethically. They’re powerful, but can also have unpleasant consequences if you’re not careful during the development stage. Responsible use is paramount because it can improve many areas, including healthcare, economics, social media, and communication.
If you wish to learn more about algorithms, accredited courses might be your best option. AI and machine learning-based modules cover some of the most widely-used algorithms to help expand your knowledge about this topic.
Related posts
Source:
- Agenda Digitale, published on November 25th, 2025
In recent years, the word ” sustainability ” has become a firm fixture in the corporate lexicon. However, simply “doing no harm” is no longer enough: the climate crisis , social inequalities , and the erosion of natural resources require a change of pace. This is where the net-positive paradigm comes in , a model that isn’t content to simply reduce negative impacts, but aims to generate more social and environmental value than is consumed.
This isn’t about philanthropy, nor is it about reputational makeovers: net-positive is a strategic approach that intertwines economics, technology, and corporate culture. Within this framework, digitalization becomes an essential lever, capable of enabling regenerative models through circular platforms and exponential technologies.
Blockchain, AI, and IoT: The Technological Triad of Regeneration
Blockchain, Artificial Intelligence, and the Internet of Things represent the technological triad that makes this paradigm shift possible. Each addresses a critical point in regeneration.
Blockchain guarantees the traceability of material flows and product life cycles, allowing a regenerated dress or a bottle collected at sea to tell their story in a transparent and verifiable way.
Artificial Intelligence optimizes recovery and redistribution chains, predicting supply and demand, reducing waste and improving the efficiency of circular processes .
Finally, IoT enables real-time monitoring, from sensors installed at recycling plants to sharing mobility platforms, returning granular data for quick, informed decisions.
These integrated technologies allow us to move beyond linear vision and enable systems in which value is continuously regenerated.
New business models: from product-as-a-service to incentive tokens
Digital regeneration is n’t limited to the technological dimension; it’s redefining business models. More and more companies are adopting product-as-a-service approaches , transforming goods into services: from technical clothing rentals to pay-per-use for industrial machinery. This approach reduces resource consumption and encourages modular design, designed for reuse.
At the same time, circular marketplaces create ecosystems where materials, components, and products find new life. No longer waste, but input for other production processes. The logic of scarcity is overturned in an economy of regenerated abundance.
To complete the picture, incentive tokens — digital tools that reward virtuous behavior, from collecting plastic from the sea to reusing used clothing — activate global communities and catalyze private capital for regeneration.
Measuring Impact: Integrated Metrics for Net-Positiveness
One of the main obstacles to the widespread adoption of net-positive models is the difficulty of measuring their impact. Traditional profit-focused accounting systems are not enough. They need to be combined with integrated metrics that combine ESG and ROI, such as impact-weighted accounting or innovative indicators like lifetime carbon savings.
In this way, companies can validate the scalability of their models and attract investors who are increasingly attentive to financial returns that go hand in hand with social and environmental returns.
Case studies: RePlanet Energy, RIFO, and Ogyre
Concrete examples demonstrate how the combination of circular platforms and exponential technologies can generate real value. RePlanet Energy has defined its Massive Transformative Purpose as “Enabling Regeneration” and is now providing sustainable energy to Nigerian schools and hospitals, thanks in part to transparent blockchain-based supply chains and the active contribution of employees. RIFO, a Tuscan circular fashion brand, regenerates textile waste into new clothing, supporting local artisans and promoting workplace inclusion, with transparency in the production process as a distinctive feature and driver of loyalty. Ogyre incentivizes fishermen to collect plastic during their fishing trips; the recovered material is digitally tracked and transformed into new products, while the global community participates through tokens and environmental compensation programs.
These cases demonstrate how regeneration and profitability are not contradictory, but can actually feed off each other, strengthening the competitiveness of businesses.
From Net Zero to Net Positive: The Role of Massive Transformative Purpose
The crucial point lies in the distinction between sustainability and regeneration. The former aims for net zero, that is, reducing the impact until it is completely neutralized. The latter goes further, aiming for a net positive, capable of giving back more than it consumes.
This shift in perspective requires a strong Massive Transformative Purpose: an inspiring and shared goal that guides strategic choices, preventing technology from becoming a sterile end. Without this level of intentionality, even the most advanced tools risk turning into gadgets with no impact.
Regenerating business also means regenerating skills to train a new generation of professionals capable not only of using technologies but also of directing them towards regenerative business models. From this perspective, training becomes the first step in a transformation that is simultaneously cultural, economic, and social.
The Regenerative Future: Technology, Skills, and Shared Value
Digital regeneration is not an abstract concept, but a concrete practice already being tested by companies in Europe and around the world. It’s an opportunity for businesses to redefine their role, moving from mere economic operators to drivers of net-positive value for society and the environment.
The combination of blockchain, AI, and IoT with circular product-as-a-service models, marketplaces, and incentive tokens can enable scalable and sustainable regenerative ecosystems. The future of business isn’t just measured in terms of margins, but in the ability to leave the world better than we found it.
Source:
- Raconteur, published on November 06th, 2025
Many firms have conducted successful Artificial Intelligence (AI) pilot projects, but scaling them across departments and workflows remains a challenge. Inference costs, data silos, talent gaps and poor alignment with business strategy are just some of the issues that leave organisations trapped in pilot purgatory. This inability to scale successful experiments means AI’s potential for improving enterprise efficiency, decision-making and innovation isn’t fully realised. So what’s the solution?
Although it’s not a magic bullet, an AI operating model is really the foundation for scaling pilot projects up to enterprise-wide deployments. Essentially it’s a structured framework that defines how the organisation develops, deploys and governs AI. By bringing together infrastructure, data, people, and governance in a flexible and secure way, it ensures that AI delivers value at scale while remaining ethical and compliant.
“A successful AI proof-of-concept is like building a single race car that can go fast,” says Professor Yu Xiong, chair of business analytics at the UK-based Surrey Business School. “An efficient AI technology operations model, however, is the entire system – the processes, tools, and team structures – for continuously manufacturing, maintaining, and safely operating an entire fleet of cars.”
But while the importance of this framework is clear, how should enterprises establish and embed it?
“It begins with a clear strategy that defines objectives, desired outcomes, and measurable success criteria, such as model performance, bias detection, and regulatory compliance metrics,” says Professor Azadeh Haratiannezhadi, co-founder of generative AI company Taktify and professor of generative AI in cybersecurity at OPIT – the Open Institute of Technology.
Platforms, tools and MLOps pipelines that enable models to be deployed, monitored and scaled in a safe and efficient way are also essential in practical terms.
“Tools and infrastructure must also be selected with transparency, cost, and governance in mind,” says Efrain Ruh, continental chief technology officer for Europe at Digitate. “Crucially, organisations need to continuously monitor the evolving AI landscape and adapt their models to new capabilities and market offerings.”
An open approach
The most effective AI operating models are also founded on openness, interoperability and modularity. Open source platforms and tools provide greater control over data, deployment environments and costs, for example. These characteristics can help enterprises to avoid vendor lock-in, successfully align AI to business culture and values, and embed it safely into cross-department workflows.
“Modularity and platformisation…avoids building isolated ‘silos’ for each project,” explains professor Xiong. “Instead, it provides a shared, reusable ‘AI platform’ that integrates toolchains for data preparation, model training, deployment, monitoring, and retraining. This drastically improves efficiency and reduces the cost of redundant work.”
A strong data strategy is equally vital for ensuring high-quality performance and reducing bias. Ideally, the AI operating model should be cloud and LLM agnostic too.
“This allows organisations to coordinate and orchestrate AI agents from various sources, whether that’s internal or 3rd party,” says Babak Hodjat, global chief technology officer of AI at Cognizant. “The interoperability also means businesses can adopt an agile iterative process for AI projects that is guided by measuring efficiency, productivity, and quality gains, while guaranteeing trust and safety are built into all elements of design and implementation.”
A robust AI operating model should feature clear objectives for compliance, security and data privacy, as well as accountability structures. Richard Corbridge, chief information officer of Segro, advises organisations to: “Start small with well-scoped pilots that solve real pain points, then bake in repeatable patterns, data contracts, test harnesses, explainability checks and rollback plans, so learning can be scaled without multiplying risk. If you don’t codify how models are approved, deployed, monitored and retired, you won’t get past pilot purgatory.”
Of course, technology alone can’t drive successful AI adoption at scale: the right skills and culture are also essential for embedding AI across the enterprise.
“Multidisciplinary teams that combine technical expertise in AI, security, and governance with deep business knowledge create a foundation for sustainable adoption,” says Professor Haratiannezhadi. “Ongoing training ensures staff acquire advanced AI skills while understanding associated risks and responsibilities.”
Ultimately, an AI operating model is the playbook that enables an enterprise to use AI responsibly and effectively at scale. By drawing together governance, technological infrastructure, cultural change and open collaboration, it supports the shift from isolated experiments to the kind of sustainable AI capability that can drive competitive advantage.
In other words, it’s the foundation for turning ambition into reality, and finally escaping pilot purgatory for good.
Have questions?
Visit our FAQ page or get in touch with us!
Write us at +39 335 576 0263
Get in touch at hello@opit.com
Talk to one of our Study Advisors
We are international
We can speak in: