Algorithms are the backbone behind technology that have helped establish some of the world’s most famous companies. Software giants like Google, beverage giants Coca Cola and many other organizations utilize proprietary algorithms to improve their services and enhance customer experience. Algorithms are an inseparable part of the technology behind organization as they help improve security, product or service recommendations, and increase sales.

Knowing the benefits of algorithms is useful, but you might also be interested to know what makes them so advantageous. As such, you’re probably asking: “What is an algorithm?” Here’s the most common algorithm definition: an algorithm is a set of procedures and rules a computer follows to solve a problem.

In addition to the meaning of the word “algorithm,” this article will also cover the key types and characteristics of algorithms, as well as their applications.

Types of Algorithms and Design Techniques

One of the main reasons people rely on algorithms is that they offer a principled and structured means to represent a problem on a computer.

Recursive Algorithms

Recursive algorithms are critical for solving many problems. The core idea behind recursive algorithms is to use functions that call themselves on smaller chunks of the problem.

Divide and Conquer Algorithms

Divide and conquer algorithms are similar to recursive algorithms. They divide a large problem into smaller units. Algorithms solve each smaller component before combining them to tackle the original, large problem.

Greedy Algorithms

A greedy algorithm looks for solutions based on benefits. More specifically, it resolves problems in sections by determining how many benefits it can extract by analyzing a certain section. The more benefits it has, the more likely it is to solve a problem, hence the term greedy.

Dynamic Programming Algorithms

Dynamic programming algorithms follow a similar approach to recursive and divide and conquer algorithms. First, they break down a complex problem into smaller pieces. Next, it solves each smaller piece once and saves the solution for later use instead of computing it.

Backtracking Algorithms

After dividing a problem, an algorithm may have trouble moving forward to find a solution. If that’s the case, a backtracking algorithm can return to parts of the problem it has already solved until it determines a way forward that can overcome the setback.

Brute Force Algorithms

Brute force algorithms try every possible solution until they determine the best one. Brute force algorithms are simpler, but the solution they find might not be as good or elegant as those found by the other types of algorithms.

Algorithm Analysis and Optimization

Digital transformation remains one of the biggest challenges for businesses in 2023. Algorithms can facilitate the transition through careful analysis and optimization.

Time Complexity

The time complexity of an algorithm refers to how long you need to execute a certain algorithm. A number of factors determine time complexity, but the algorithm’s input length is the most important consideration.

Space Complexity

Before you can run an algorithm, you need to make sure your device has enough memory. The amount of memory required for executing an algorithm is known as space complexity.

Trade-Offs

Solving a problem with an algorithm in C or any other programming language is about making compromises. In other words, the system often makes trade-offs between the time and space available.

For example, an algorithm can use less space, but this extends the time it takes to solve a problem. Alternatively, it can take up a lot of space to address an issue faster.

Optimization Techniques

Algorithms generally work great out of the box, but they sometimes fail to deliver the desired results. In these cases, you can implement a slew of optimization techniques to make them more effective.

Memorization

You generally use memorization if you wish to elevate the efficacy of a recursive algorithm. The technique rewrites algorithms and stores them in arrays. The main reason memorization is so powerful is that it eliminates the need to calculate results multiple times.

Parallelization

As the name suggests, parallelization is the ability of algorithms to perform operations simultaneously. This accelerates task completion and is normally utilized when you have a lot of memory on your device.

Heuristics

Heuristic algorithms (a.k.a. heuristics) are algorithms used to speed up problem-solving. They generally target non-deterministic polynomial-time (NP) problems.

Approximation Algorithms

Another way to solve a problem if you’re short on time is to incorporate an approximation algorithm. Rather than provide a 100% optimal solution and risk taking longer, you use this algorithm to get approximate solutions. From there, you can calculate how far away they are from the optimal solution.

Pruning

Algorithms sometimes analyze unnecessary data, slowing down your task completion. A great way to expedite the process is to utilize pruning. This compression method removes unwanted information by shrinking algorithm decision trees.

Algorithm Applications and Challenges

Thanks to this introduction to algorithm, you’ll no longer wonder: “What is an algorithm, and what are the different types?” Now it’s time to go through the most significant applications and challenges of algorithms.

Sorting Algorithms

Sorting algorithms arrange elements in a series to help solve complex issues faster. There are different types of sorting, including linear, insertion, and bubble sorting. They’re generally used for exploring databases and virtual search spaces.

Searching Algorithms

An algorithm in C or other programming languages can be used as a searching algorithm. They allow you to identify a small item in a large group of related elements.

Graph Algorithms

Graph algorithms are just as practical, if not more practical, than other types. Graphs consist of nodes and edges, where each edge connects two nodes.

There are numerous real-life applications of graph algorithms. For instance, you might have wondered how engineers solve problems regarding wireless networks or city traffic. The answer lies in using graph algorithms.

The same goes for social media sites, such as Facebook. Algorithms on such platforms contain nodes, which represent key information, like names and genders and edges that represent the relationships or dependencies between them.

Cryptography Algorithms

When creating an account on some websites, the platform can generate a random password for you. It’s usually stronger than custom-made codes, thanks to cryptography algorithms. They can scramble digital text and turn it into an unreadable string. Many organizations use this method to protect their data and prevent unauthorized access.

Machine Learning Algorithms

Over 70% of enterprises prioritize machine learning applications. To implement their ideas, they rely on machine learning algorithms. They’re particularly useful for financial institutions because they can predict future trends.

Famous Algorithm Challenges

Many organizations struggle to adopt algorithms, be it an algorithm in data structure or computer science. The reason being, algorithms present several challenges:

  • Opacity – You can’t take a closer look at the inside of an algorithm. Only the end result is visible, which is why it’s difficult to understand an algorithm.
  • Heterogeneity – Most algorithms are heterogeneous, behaving differently from one another. This makes them even more complex.
  • Dependency – Each algorithm comes with the abovementioned time and space restrictions.

Algorithm Ethics, Fairness, and Social Impact

When discussing critical characteristics of algorithms, it’s important to highlight the main concerns surrounding this technology.

Bias in Algorithms

Algorithms aren’t intrinsically biased unless the developer injects their personal biases into the design. If so, getting impartial results from an algorithm is highly unlikely.

Transparency and Explainability

Knowing only the consequences of algorithms prevents us from explaining them in detail. A transparent algorithm enables a user to view and understand its different operations. In contrast, explainability of an algorithm relates to its ability to provide reasons for the decisions it makes.

Privacy and Security

Some algorithms require end users to share private information. If cyber criminals hack the system, they can easily steal the data.

Algorithm Accessibility and Inclusivity

Limited explainability hinders access to algorithms. Likewise, it’s hard to include different viewpoints and characteristics in an algorithm, especially if it is biased.

Algorithm Trust and Confidence

No algorithm is omnipotent. Claiming otherwise makes it untrustworthy – the best way to prevent this is for the algorithm to state its limitations.

Algorithm Social Impact

Algorithms impact almost every area of life including politics, economic and healthcare decisions, marketing, transportation, social media and Internet, and society and culture in general.

Algorithm Sustainability and Environmental Impact

Contrary to popular belief, algorithms aren’t very sustainable. The extraction of materials to make computers that power algorithms is a major polluter.

Future of Algorithms

Algorithms are already advanced, but what does the future hold for this technology? Here are a few potential applications and types of future algorithms:

  • Quantum Algorithms – Quantum algorithms are expected to run on quantum computers to achieve unprecedented speeds and efficiency.
  • Artificial Intelligence and Machine Learning – AI and machine learning algorithms can help a computer develop human-like cognitive qualities via learning from its environment and experiences.
  • Algorithmic Fairness and Ethics – Considering the aforementioned challenges of algorithms, developers are expected to improve the technology. It may become more ethical with fewer privacy violations and accessibility issues.

Smart, Ethical Implementation Is the Difference-Maker

Understanding algorithms is crucial if you want to implement them correctly and ethically. They’re powerful, but can also have unpleasant consequences if you’re not careful during the development stage. Responsible use is paramount because it can improve many areas, including healthcare, economics, social media, and communication.

If you wish to learn more about algorithms, accredited courses might be your best option. AI and machine learning-based modules cover some of the most widely-used algorithms to help expand your knowledge about this topic.

Related posts

The Path to Education Is Not Always Straightforward
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Dec 17, 2025 6 min read

Life is unpredictable. While many of us have specific hopes and expectations of how our futures will turn out, things don’t always go as expected. There are many variables and unexpected incidents that can interfere and force you to alter your plans, and this is particularly true when it comes to education.

For instance, you might have had plans to study a specific subject, but had to deviate from those plans due to unforeseen circumstances. Or you may have had to enter the workforce in an occupation different from the one you sought in an effort to earn an income, a move that may not provide you with the time or opportunity to achieve your desired educational aims.

In short, every individual’s career pathway is different, and very few go exactly as we expect from the outset. Fortunately, even if you experience a few false starts or sudden twists in your pathway, there are always options available to help you get back on track.

The Unpredictable Nature of Education

In theory, the educational process seems simple. You select a course of study that interests you from the vast array of subjects and prospective professions, select the appropriate classes, acquire the knowledge and skills you need to succeed, and then embark on your profession.

In reality, however, as many people know from firsthand experience, the road to education is often far from straightforward. Here are just some of the many challenges that can take your educational path in a completely different direction:

  • Life’s Curveballs: As touched on in the introduction, life is impossible to predict. Financial hardships, health issues, and family emergencies are just some of the unfortunate occurrences that might derail even the most perfectly planned educational regime.
  • Changing Interests: People’s desires and preferences don’t necessarily stay the same throughout their entire lives. As you grow, learn, and have new experiences, your interests may change, and so, too, may your educational objectives.
  • Pressure and Burnout: Some academic paths are particularly challenging, demanding intense levels of study and hard work. This can sometimes prove too much to bear, even for the most resilient students.
  • Failures and Setbacks: Conventional education largely builds around tests and examinations, requiring students to demonstrate their competencies repeatedly. It’s a system that doesn’t suit everyone, and test failures can lead to setbacks and delays.
  • Inequality: People can be born with very different privileges and levels of access to education. Those in certain parts of the world may find it much more challenging to complete their education path for financial, cultural, or even political reasons.
  • Late Bloomers: People develop at different paces. Some may struggle educationally early on in their lives, forcing them to make certain concessions or sacrifices related to their studies, only to find their feet later in life once they’ve entered the world of work.

Whether you’re a late bloomer, have had your educational aspirations delayed by personal problems, desire to learn new skills and try something different, or want to begin a fresh chapter in your professional life, the Open Institute of Technology (OPIT) may be able to help.

Introducing OPIT

OPIT is an online teaching platform, making high-level technological educational programs accessible to all, no matter their age or background. Offering education in fields like computer science, artificial intelligence, and digital business, OPIT provides a curated collection of degrees. In addition, they offer classes taught by world-leading tutors imparting the wisdom and skills students need to achieve their goals and become the tech leaders of tomorrow.

Meanwhile, for those who have had somewhat tumultuous or unpredictable educational paths, OPIT offers the perfect course corrector: the OPIT Foundation Year.

The OPIT Foundation Year

OPIT’s Foundation Year is a Pre-Tertiary Certificate in Information Technology, fully aligned with MQF/EQF Level 4 standards and valued at 60 ECTS credits. Lasting just one year, this program essentially serves as a comprehensive yet accessible springboard towards higher-level education, creating a path towards degrees and careers in dynamic, flexible fields, like computer science and digital business.

Like other OPIT programs, the Foundation Year is delivered entirely online via the OPIT Virtual Learning Environment. Combining live lectures, asynchronous content, and interactive assessments, students enjoy diverse and dynamic study experiences, acquiring core skills like academic writing, mathematics, and computer literacy, and building a bedrock of knowledge and confidence before taking their next steps.

Who Is the Foundation Program For?

The Foundation Program is designed to provide a solid base upon which to build the technological education many students need. It’s the perfect choice for those who are eager and ambitious to enter professions in AI, data science, and computing, but don’t feel that they have the necessary core skills and knowledge needed to dive straight into a degree.

Entry requirements are relatively relaxed in order to allow as many students as possible to enjoy the benefits of this program. With that said, applicants should ideally hold an MQF/EQF Level 3 or equivalent qualification, with the intention of pursuing a bachelor’s degree. A minimum of B2 level of English proficiency is also required, as this is the working and studying language of the institution.

What the Foundation Year Provides

Perhaps you’ve recently graduated, are considering a career change, or finally have the opportunity to return to education after initial delays or unexpected disruptions to your original plans. Either way, the Foundation Year can help you enjoy:

  • Greater Self-Confidence: Foundation Year graduates gain the fundamental skills they need to enter degree programs with much more self-belief and assuredness.
  • Superior Tech Knowledge: Lasting two terms, this course explores mathematics, academic reading and writing, and provides an introduction to computer hardware and software.
  • Foundational Mathematics: Mathematics literacy forms a large part of the study focus for the Foundation Year, helping students feel more comfortable with numbers and formulas.
  • Flexible Learning: Unlike more rigid, conventional education environments, OPIT gives you the freedom and flexibility to study at a pace that suits you best, all from the comfort of home.
  • Global Community: OPIT is an international institution, with staff and students from all around the world eager to share knowledge, exchange ideas, and help one another.

Take Your Next Steps to Success With the OPIT Foundation Year

If you’re curious about a career in technology or have always wanted to work with AI, data, and computers, but struggled to find the time and opportunities you need to acquire relevant skills and knowledge, the Foundation Program was made for people like you.

It’s the ideal entry point into the exciting world of online education, and the perfect first step towards a prestigious degree from an innovative and increasingly successful institution. Download the brochure to learn more about it, or start your online application, today.

Read the article
Benefits of Doing a Career in Computer Science
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Dec 17, 2025 6 min read

Students today have a broader range of fields of study to choose from than ever before, but with the world becoming increasingly technological and computers increasing in influence and importance, pursuing a career in computer science often proves a smart, strategic choice.

There are numerous benefits and career paths associated with studying and working in computer science, and we’ll be listing just a few of them in this guide.

High Average Salaries

With the rising cost of living in many parts of the world, it’s unsurprising that many students are thinking several decades ahead to determine what level of starting salaries they could obtain in different career fields.

Many are also seeking professions that offer the opportunity for growth and the ability to advance up the ranks over time, thus increasing their salary and their quality of life in the process.

If a strong, stable salary with the opportunity for improved income is one of your top career priorities, computer science should be at or near the top of your list of prospective careers.

According to recent data, computer scientists earn an average of over €65,000 per year, with certain jobs, like IT project leader and data scientist, paying ever higher. Starting salaries are strong, too, with graduates earning anywhere from €46,000 to €60,000, depending on their chosen profession and level of qualifications.

There are similarly high average salaries reported around the world in computer science and related fields such as data science and AI/ML engineering. These numbers are projected to increase in the years to come, pointing to computer science as a way for graduates to get off to the best financial start of any career.

Unrivaled Flexibility

A common problem with some subjects and courses is that they only provide graduates with a narrow set of skills and a similarly narrow range of potential professions to which they can apply those skills.

That’s not the case with computer science. Graduates in this field can enjoy instant access to a remarkably diverse array of career opportunities, with even newer opportunities being created all the time as technology evolves and innovations emerge.

A few of the many industries and roles you might choose to enter in the field of computer science include:

  • Healthcare: As a software developer, data analyst, or cybersecurity expert
  • Finance: As a fintech engineer, blockchain developer, or security analyst
  • Media: As a graphics programmer, AI developer, or game developer
  • Education: As an analyst, software developer, or machine learning engineer

Guaranteed Opportunities

Some career paths are more limited than others, with relatively low numbers of opportunities, recurring risks of job loss, or difficulty obtaining employment in the first place.

Again, with computer science, this simply isn’t the case. At a time when 75% of companies plan to embrace AI and other technologies by 2027, and businesses of all sizes and industries are now relying on computers more than ever before, computer science graduates can enjoy almost unbeatable job security.

Opportunities will continue to grow for people with good computing knowledge, whether that be in the obvious fields like software and web development, engineering, and AI development, or more niche sectors.

With so many options, you’re effectively guaranteed a long, rewarding career if you put in the necessary time and effort needed to establish a strong foundation of computing skills.

Rapidly Expanding and Evolving Industries

It’s no secret that the world of technology is a dynamic and fast-moving one. In the past 20 years alone, we’ve seen the proliferation of the internet, the rapid advancement of smartphones and wearable devices, the emergence of AI, and so much more.

In the years ahead, engineers and developers will continue to explore the boundaries of modern technology’s powers and potential, driving new innovations and improvements and opening more exciting job opportunities for those already established and experienced in this field.

Getting into computer science now could therefore provide a solid foundation for a career filled with excitement as you uncover and explore new ways of working with computers in fields as diverse as healthcare, finance, education, entertainment, manufacturing, logistics, and beyond.

Start Your Computer Science Career at OPIT

We’ve discussed some of the many benefits associated with careers in computer science, from the high starting salaries to the rapidly growing array of job options available to graduates. By now, you may be eager to follow this particular career path and take advantage of the wealth of opportunities.

If you’re wondering how to start, the Open Institute of Technology (OPIT) may hold the answers you need. As an exclusively online learning platform, specializing in computer science and digital business, and staffed by some of the world’s leading tech experts, OPIT is producing the tech leaders of tomorrow.

Some of the many advantages of learning with OPIT include:

  • Accessible and flexible online education that matches your learning style and schedule
  • Heavy focus on real-world applications of the skills you acquire
  • An international community of like-minded students from around the globe
  • A top team of tutors and lecturers from varying fields and industries
  • Progressive assessment of skills and understanding – not constant exams

OPIT offers a small, curated selection of courses for those seeking to gain the technological skills and knowledge to succeed in their chosen areas of expertise. That includes a BSc (Hons) in Computer Science – a six-term program, worth 180 ECTS credits.

Numerous IT industry leaders and experts helped develop this fully accredited undergraduate degree, which is online and accessible to all. Like other OPIT courses, it offers a flexible learning program, with progressive assessments, fast-track options, and the opportunity to be part of a growing community of learners and tutors.

If the benefits of doing a career in computer science interest you, download the OPIT BSc in Computer Science brochure or fill out an online application today and take your first step toward a rewarding and fulfilling profession.

Read the article