For decades, we have used computers to make important decisions in every arena, from business down to our personal lives. Artificial intelligence is the next evolution in computer-based decision-making. Combined with data science, which is the art of processing, extracting, and analyzing data, AI stands to hold a huge influence over our future.
You stand at the cusp of that technological wave. By completing an artificial intelligence and data science course, you develop dual capabilities that put you in the perfect position to enjoy a superb career.
Factors to Consider When Choosing an AI and Data Science Course
You need to know what you’re letting yourself in for before choosing a data science and artificial intelligence course. After all, the course you choose (and its quality) will impact your career prospects. Consider these six factors when making your choice.
1 – Course Content
Both data science and AI are expansive fields that contain a lot of categories and specializations. So, the question you need to ask is does the course cover what I need to know to get the job I want? If it doesn’t, you end up dedicating months (or even years) of your life to a course that brings you no closer to your goals.
2 – Course Duration and Flexibility
Not every student has the luxury of being able to commit full-time to an AI and data science course. Some have work, families, and other commitments to maintain. Ideally, your course should be of an appropriate length for your needs, in addition to offering the flexibility you need to fit your studies around the rest of your life.
3 – Instructor Expertise and Experience
Though data science has been around for decades, AI is still a somewhat nascent field, at least in terms of its modern form. You want to see that your course is created and overseen by people who know what they’re talking about. Do they have direct industry experience? Are their qualifications up to standard? What does your instructor have that makes taking their AI and data science course worthwhile?
4 – Course Fees and Return on Investment
A career in data science is usually strong enough to offer a good return on investment, with European data scientists pulling in an average of €60,815 per year. Throw AI into the mix and you have extra skills that could easily lead you toward six figures. Still, the cost of the course plays a role in your decision, with some courses costing five figures themselves.
5 – Online vs. Offline Courses
Picking between online and offline courses is like playing an arcade game with a guaranteed prize – there’s no way to lose. Your only consideration is what works best for you. Offline courses are great for self-motivated learners who need flexibility. Online courses put you in a classroom environment so you have direct contact with instructors and peers.
6 – Certification and Accreditation
When you finally start applying for jobs, the first thing your potential employer will ask is “Where did this person study their artificial intelligence and data science course?” The answer to that question will impact their decision, meaning your course provider needs to have a solid enough reputation to make their certifications and accreditations worth having.
Top AI and Data Science Courses
There is a metaphorical river of courses, both online and off, that can teach you about artificial intelligence and data science. Here are four of the best.
Course 1 – AI For Business Specialization (University of Pennsylvania via Coursera)
AI, Big Data, and the core concepts behind machine learning combine to create this AI and data science course. Beyond teaching you how to apply these computing concepts in a business setting, AI For Business Specialization digs into the ethics of applying AI fairly inside a business and how these evolving technologies will affect the people you work with, for, and manage.
Key Features
- Direct exposure to industry-hardened professionals who apply the skills you’re learning
- Includes peer-reviewed assessments designed to test your knowledge
- A 100% online course that offers complete flexibility in how you schedule your learning
- No experience in data science or AI required to get started
Pros and Cons
For somebody new to the concepts of AI and data science, this is the perfect course because it starts you out at the beginner level and builds you up from there. It’s flexible, too, with the course providers recommending two hours of learning per week to complete the four-month course. However, the course carries no university credit, so those using it to supplement their existing studies have to make do with the certificate and nothing more.
Course 2 – Machine Learning (Udacity)
Those looking for a budget-conscious artificial intelligence and data science course can rely on Udacity to provide its Machine Learning course at no charge. You’ll need a solid understanding of concepts like linear algebra and probability theory, making this course unsuitable for beginners. But assuming you come prepared, you’ll learn about the main approaches in machine learning (supervised, unsupervised, and reinforcement learning) in a self-paced online environment.
Key Features
- Takes approximately four months to complete, though you can finish at your own pace
- Created and taught by industry experts
- Ideal for building foundational knowledge for future courses related to data science and AI
- Teaches multiple approaches to machine learning
Pros and Cons
The price is certainly right with this course, as you’re getting something very useful at no cost. It’s also an online version of class CS7641, which is taught at Georgia Tech, so the course has real-world credentials behind it. Sadly, its college-based origins don’t mean that you’ll get college credit with the course. It’s also pretty limited to specific forms of machine learning, making it great as an introduction to basic concepts but perhaps not as useful to people who already have some understanding of data science and AI.
Course 3 – Introduction to Artificial Intelligence (AI) (IBM via Coursera)
Quick, intense, and practical are just some of the words we can use to describe this data science and artificial intelligence course. IBM’s experts are clearly masters in the field (they wouldn’t be working for IBM if they weren’t) and they’ve distilled some of the best of their knowledge into this nine-hour completely online course. You’ll learn about the applications of AI in real-world scenarios, start getting to grips with concepts like machine learning and neural networks, and receive direct career advice from your instructors.
Key Features
- Offered by a Fortune 50 company that specializes in AI and data science
- Free enrollment for a self-paced course
- You get direct career advice from people who work in the field
- The course offers a shareable online certificate that looks great on your LinkedIn profile
Pros and Cons
Let’s get the obvious out of the way first – this is an AI and data science course for those who want to learn the fundamentals before building their knowledge in other ways. But it’s the connections that come with the course that make this such a strong contender. Having people from IBM, who already work in the field that interests you, to advise you is great for people who need a route into AI and data science.
Course 4 – Master in Applied Data Science & AI (OPIT)
A Master’s degree allows you to dig deeper into the concepts of AI and data science, with OPIT’s degree being perfect for those in the postgraduate phase who’ve balked at the cost of similar programs. This AI and data science course requires an extensive time investment of between 12 and 18 months, though it’s fully online so you can learn at your own pace. It also counts toward college credits, offering 90 ECTS upon completion.
Key Features
- Completely online so it offers flexibility in terms of how and where you learn
- Provided by an EU-accredited institution to ensure the certification you receive is actually useful
- You get 24/7 access to tutors who can advise you when you’re stuck
- Progressive assessments are favored over “final exams” and other high-pressure tests
Pros and Cons
This artificial intelligence and data science course is the most expensive on the list, clocking in at €6,500 (or €4,950 for early birds). It also requires a BSc in an appropriate field, such as computer science, to start studying. But that investment in both time and money leads you to a course that has full accreditation under the European Qualification Framework and gives you a well-rounded set of skills that set you up for C-Suite positions in your future career.
Tips for Success in AI and Data Science Courses
An AI and data science course could offer the best tutelage in the world but it won’t mean a thing if you’re not applying yourself as a student. These quick tips help you take what you learn further:
- Set clear goals for what you hope to achieve, both within the course and after completion, so you always have a path to follow.
- Don’t take “this course requires x number of hours per week” as given. Practice and set time to study whenever you can to build on your knowledge.
- As valuable as your peers and instructors may be, they’re not the only resources available to you. Engage with online communities and forums to stay up to date on trends in AI and data science.
- Some courses offer direct examples of how what you learn applies to the real world. Others don’t, so you have to seek out (and apply) your learning to real projects yourself.
- Think about what AI looked like five years ago compared to today. This is a continuously evolving field (the same goes for data science), so continued learning is a must once you’ve completed your course.
Combine AI and Data Sciences for Career Advancement
Earlier, we stated that data scientists earn an average of €60,815 per year in Europe. That’s a starting point. Mastery in the fields of AI and data science (which starts with an artificial intelligence and data science course) puts you in a position to work at the C-Suite level in many of today’s businesses. Investing in yourself now, when these fields are still in their growth phase, puts you in the perfect position to take advantage as we see both fields enjoy explosive growth in the future.
Related posts
Source:
- The Yuan, Published on October 25th, 2024.
By Zorina Alliata
Artificial intelligence is a classic example of a mismatch between perceptions and reality, as people tend to overlook its positive aspects and fear it far more than what is warranted by its actual capabilities, argues AI strategist and professor Zorina Alliata.
ALEXANDRIA, VIRGINIA – In recent years, artificial intelligence (AI) has grown and developed into something much bigger than most people could have ever expected. Jokes about robots living among humans no longer seem so harmless, and the average person began to develop a new awareness of AI and all its uses. Unfortunately, however – as is often a human tendency – people became hyper-fixated on the negative aspects of AI, often forgetting about all the good it can do. One should therefore take a step back and remember that humanity is still only in the very early stages of developing real intelligence outside of the human brain, and so at this point AI is almost like a small child that humans are raising.
AI is still developing, growing, and adapting, and like any new tech it has its drawbacks. At one point, people had fears and doubts about electricity, calculators, and mobile phones – but now these have become ubiquitous aspects of everyday life, and it is not difficult to imagine a future in which this is the case for AI as well.
The development of AI certainly comes with relevant and real concerns that must be addressed – such as its controversial role in education, the potential job losses it might lead to, and its bias and inaccuracies. For every fear, however, there is also a ray of hope, and that is largely thanks to people and their ingenuity.
Looking at education, many educators around the world are worried about recent developments in AI. The frequently discussed ChatGPT – which is now on its fourth version – is a major red flag for many, causing concerns around plagiarism and creating fears that it will lead to the end of writing as people know it. This is one of the main factors that has increased the pessimistic reporting about AI that one so often sees in the media.
However, when one actually considers ChatGPT in its current state, it is safe to say that these fears are probably overblown. Can ChatGPT really replace the human mind, which is capable of so much that AI cannot replicate? As for educators, instead of assuming that all their students will want to cheat, they should instead consider the options for taking advantage of new tech to enhance the learning experience. Most people now know the tell-tale signs for identifying something that ChatGPT has written. Excessive use of numbered lists, repetitive language and poor comparison skills are just three ways to tell if a piece of writing is legitimate or if a bot is behind it. This author personally encourages the use of AI in the classes I teach. This is because it is better for students to understand what AI can do and how to use it as a tool in their learning instead of avoiding and fearing it, or being discouraged from using it no matter the circumstances.
Educators should therefore reframe the idea of ChatGPT in their minds, have open discussions with students about its uses, and help them understand that it is actually just another tool to help them learn more efficiently – and not a replacement for their own thoughts and words. Such frank discussions help students develop their critical thinking skills and start understanding their own influence on ChatGPT and other AI-powered tools.
By developing one’s understanding of AI’s actual capabilities, one can begin to understand its uses in everyday life. Some would have people believe that this means countless jobs will inevitably become obsolete, but that is not entirely true. Even if AI does replace some jobs, it will still need industry experts to guide it, meaning that entirely new jobs are being created at the same time as some older jobs are disappearing.
Adapting to AI is a new challenge for most industries, and it is certainly daunting at times. The reality, however, is that AI is not here to steal people’s jobs. If anything, it will change the nature of some jobs and may even improve them by making human workers more efficient and productive. If AI is to be a truly useful tool, it will still need humans. One should remember that humans working alongside AI and using it as a tool is key, because in most cases AI cannot do the job of a person by itself.
Is AI biased?
Why should one view AI as a tool and not a replacement? The main reason is because AI itself is still learning, and AI-powered tools such as ChatGPT do not understand bias. As a result, whenever ChatGPT is asked a question it will pull information from anywhere, and so it can easily repeat old biases. AI is learning from previous data, much of which is biased or out of date. Data about home ownership and mortgages, e.g., are often biased because non-white people in the United States could not get a mortgage until after the 1960s. The effect on data due to this lending discrimination is only now being fully understood.
AI is certainly biased at times, but that stems from human bias. Again, this just reinforces the need for humans to be in control of AI. AI is like a young child in that it is still absorbing what is happening around it. People must therefore not fear it, but instead guide it in the right direction.
For AI to be used as a tool, it must be treated as such. If one wanted to build a house, one would not expect one’s tools to be able to do the job alone – and AI must be viewed through a similar lens. By acknowledging this aspect of AI and taking control of humans’ role in its development, the world would be better placed to reap the benefits and quash the fears associated with AI. One should therefore not assume that all the doom and gloom one reads about AI is exactly as it seems. Instead, people should try experimenting with it and learning from it, and maybe soon they will realize that it was the best thing that could have happened to humanity.
Read the full article below:
Source:
- The European Business Review, Published on October 27th, 2024.
By Lokesh Vij
Lokesh Vij is a Professor of BSc in Modern Computer Science & MSc in Applied Data Science & AI at Open Institute of Technology. With over 20 years of experience in cloud computing infrastructure, cybersecurity and cloud development, Professor Vij is an expert in all things related to data and modern computer science.
In today’s rapidly evolving technological landscape, the fields of blockchain and cloud computing are transforming industries, from finance to healthcare, and creating new opportunities for innovation. Integrating these technologies into education is not merely a trend but a necessity to equip students with the skills they need to thrive in the future workforce. Though both technologies are independently powerful, their potential for innovation and disruption is amplified when combined. This article explores the pressing questions surrounding the inclusion of blockchain and cloud computing in education, providing a comprehensive overview of their significance, benefits, and challenges.
The Technological Edge and Future Outlook
Cloud computing has revolutionized how businesses and individuals’ access and manage data and applications. Benefits like scalability, cost efficiency (including eliminating capital expenditure – CapEx), rapid innovation, and experimentation enable businesses to develop and deploy new applications and services quickly without the constraints of traditional on-premises infrastructure – thanks to managed services where cloud providers manage the operating system, runtime, and middleware, allowing businesses to focus on development and innovation. According to Statista, the cloud computing market is projected to reach a significant size of Euro 250 billion or even higher by 2028 (from Euro 110 billion in 2024), with a substantial Compound Annual Growth Rate (CAGR) of 22.78%. The widespread adoption of cloud computing by businesses of all sizes, coupled with the increasing demand for cloud-based services and applications, fuels the need for cloud computing professionals.
Blockchain, a distributed ledger technology, has paved the way by providing a secure, transparent, and tamper-proof way to record transactions (highly resistant to hacking and fraud). In 2021, European blockchain startups raised $1.5 billion in funding, indicating strong interest and growth potential. Reports suggest the European blockchain market could reach $39 billion by 2026, with a significant CAGR of over 47%. This growth is fueled by increasing adoption in sectors like finance, supply chain, and healthcare.
Addressing the Skills Gap
Reports from the World Economic Forum indicate that 85 million jobs may be displaced by a shift in the division of labor between humans and machines by 2025. However, 97 million new roles may emerge that are more adapted to the new division of labor between humans, machines, and algorithms, many of which will require proficiency in cloud computing and blockchain.
Furthermore, the World Economic Forum predicts that by 2027, 10% of the global GDP will be tokenized and stored on the blockchain. This massive shift means a surge in demand for blockchain professionals across various industries. Consider the implications of 10% of the global GDP being on the blockchain: it translates to a massive need for people who can build, secure, and manage these systems. We’re talking about potentially millions of jobs worldwide.
The European Blockchain Services Infrastructure (EBSI), an EU initiative, aims to deploy cross-border blockchain services across Europe, focusing on areas like digital identity, trusted data sharing, and diploma management. The EU’s MiCA (Crypto-Asset Regulation) regulation, expected to be fully implemented by 2025, will provide a clear legal framework for crypto-assets, fostering innovation and investment in the blockchain space. The projected growth and supportive regulatory environment point to a rising demand for blockchain professionals in Europe. Developing skills related to EBSI and its applications could be highly advantageous, given its potential impact on public sector blockchain adoption. Understanding the MiCA regulation will be crucial for blockchain roles related to crypto-assets and decentralized finance (DeFi).
Furthermore, European businesses are rapidly adopting digital technologies, with cloud computing as a core component of this transformation. GDPR (Data Protection Regulations) and other data protection laws push businesses to adopt secure and compliant cloud solutions. Many European countries invest heavily in cloud infrastructure and promote cloud adoption across various sectors. Artificial intelligence and machine learning will be deeply integrated into cloud platforms, enabling smarter automation, advanced analytics, and more efficient operations. This allows developers to focus on building applications without managing servers, leading to faster development cycles and increased scalability. Processing data closer to the source (like on devices or local servers) will become crucial for applications requiring real-time responses, such as IoT and autonomous vehicles.
The projected growth indicates a strong and continuous demand for blockchain and cloud professionals in Europe and worldwide. As we stand at the “crossroads of infinity,” there is a significant skill shortage, which will likely increase with the rapid adoption of these technologies. A 2023 study by SoftwareOne found that 95% of businesses globally face a cloud skills gap. Specific skills in high demand include cloud security, cloud-native development, and expertise in leading cloud platforms like AWS, Azure, and Google Cloud. The European Commission’s Digital Economy and Society Index (DESI) highlights a need for improved digital skills in areas like blockchain to support the EU’s digital transformation goals. A 2023 report by CasperLabs found that 90% of businesses in the US, UK, and China adopt blockchain, but knowledge gaps and interoperability challenges persist.
The Role of Educational Institutions
This surge in demand necessitates a corresponding increase in qualified individuals who can design, implement, and manage cloud-based and blockchain solutions. Educational institutions have a critical role to play in bridging this widening skills gap and ensuring a pipeline of talent ready to meet the demands of this burgeoning industry.
To effectively prepare the next generation of cloud computing and blockchain experts, educational institutions need to adopt a multi-pronged approach. This includes enhancing curricula with specialized programs, integrating cloud and blockchain concepts into existing courses, and providing hands-on experience with leading technology platforms.
Furthermore, investing in faculty development to ensure they possess up-to-date knowledge and expertise is crucial. Collaboration with industry partners through internships, co-teach programs, joint research projects, and mentorship programs can provide students with invaluable real-world experience and insights.
Beyond formal education, fostering a culture of lifelong learning is essential. Offering continuing education courses, boot camps, and online resources enables professionals to upskill or reskill and stay abreast of the latest advancements in cloud computing. Actively promoting awareness of career paths and opportunities in this field and facilitating connections with potential employers can empower students to thrive in the dynamic and evolving landscape of cloud computing and blockchain technologies.
By taking these steps, educational institutions can effectively prepare the young generation to fill the skills gap and thrive in the rapidly evolving world of cloud computing and blockchain.
Read the full article below:
Have questions?
Visit our FAQ page or get in touch with us!
Write us at +39 335 576 0263
Get in touch at hello@opit.com
Talk to one of our Study Advisors
We are international
We can speak in: