Books represent gateways to new worlds, allowing us to gain valuable knowledge on virtually any topic. Those interested in exploring computer science books face two challenges. First, just like you can’t build a good house without a proper foundation, you can’t expand your knowledge if you don’t understand basic concepts. Secondly, technology is always evolving, so besides understanding how things work, you need to stay current with the latest trends.


Finding books that help you build a good foundation and follow innovations isn’t easy. Fortunately, you don’t have to go through hundreds of titles to find the good ones. Here, we’ll introduce you to the best BSc Computer Science books that will set you up for success.


Top BSc Computer Science Books


These BSc Computer Science books can “program” your mind and help you absorb knowledge.


Introduction to Computer Science


Many people are eager to learn how to program and immerse themselves in the IT world. But the first step toward that is adopting fundamentals. Before jumping into the IT industry, you need to learn more about computer science and the basic concepts behind it.


Computer Science Illuminated by Nell Dale and John Lewis


This student-friendly book sheds light on computer science. It explores operating systems, hardware, software, and networks from “neutral ground” (without focusing on particular programming languages). Therefore, if you don’t “speak” programming languages just yet, this book will be your best friend.


Intro to Python for Computer Science and Data Science: Learning to Program With AI, Big Data, and the Cloud by Paul Deitel and Harvey Deitel


If you want to be a programming expert, you may need to speak Python, a universal language with a wide array of applications. This book teaches you how to use Python in computer science and offers the perfect balance between theoretical and practical knowledge. It transforms complex information into comprehensive and engaging data.


Data Structures and Algorithms


Finding the best BSc Computer Science book on data structures and algorithms can feel like trying to find a needle in a haystack. We found the needle for you and offer the best options.


Data Structures and Algorithms Made Easy by Narasimha Karumanchi


This book is a winner in the data structures and algorithms game. It’s the perfect option for beginners interested in learning the topic from scratch and building a solid foundation for more advanced levels. It covers basic concepts and moves on to more complex stuff without overwhelming the readers.


Data Structures and Algorithms in Java by Robert Lafore


If you’re familiar with Java and want to start with data structures and algorithms, this book is the gold standard. It will guide you on a journey from basic Arrays and Strings to advanced structures like Hash-Tables and Graphs.



Computer Networks


Computer networks are grids through which computing devices “talk to” each other and share data. Here are the books you can use to improve your knowledge and get ahead in your career.


Computer Networks by Andrew S. Tanenbaum


If you want to understand the nitty-gritty behind computer networks, this book is the way to go. Hop on a journey through email, the world wide web, video conferencing, and much more, to understand how the networks work and how to use them to your advantage.


Every chapter follows the same, easy-to-follow structure containing basic principles and real-life examples.


Computer Networking: A Top-Down Approach by James F. Kurose and Keith W. Ross


This beginner-friendly book takes a somewhat unusual approach. It first introduces students to applications and uses them to explain fundamental concepts. That way, students are exposed to the “real world” early on and can understand how networking works with ease.

 

Operating Systems


An operating system for a computer is like oxygen for a human; it can’t live without it. Operating systems are interfaces that support everything computers do. Here are the best books about them.


Operating Systems: Three Easy Pieces by Remzi Arpaci-Dusseau and Andrea Arpaci-Dusseau


How do operating systems work? What are the three basic concepts hiding behind every OS? Find the answers to these questions and learn everything OS-related in this book. While beginner-friendly, this amazing study can be combined with more advanced materials and offer a deeper understanding of modern OSs.


Guide to Operating Systems by Greg Tomsho


This book represents a detailed guide on installing, updating, maintaining, and configuring operating systems and everything related to them. Besides offering general info, the book explores specific OSs and allows you to peek into this world without feeling overwhelmed.


Database Systems


Database systems are like virtual warehouses where you can keep your data secure. They’re the ones we can “thank” for easy information retrieval, browsing, and organization. If you want to learn the ins and outs of database systems, these books can help.


Database Systems: The Complete Book by Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom


This book is the holy grail for many computer science students. It offers a comprehensive approach and detailed explanations of everything related to database system design, use, and implementation. The book is extensive, but it’s written in an engaging way, so reading through it is a breeze.


Database Systems: Design, Implementation, & Management by Carlos Colonel and Steven Morris


Building your virtual warehouses for storing data may seem impossible. But it can become your reality thanks to this excellent book. It contains clear and comprehensive instructions on building database systems, offers concrete examples, but also focuses on the bigger picture and latest industry trends.


Software Engineering


Designing and constructing software is no walk in the park. If you’re interested in this industry, you need to build your skills meticulously. Books that can help you on this exciting (and sometimes frustrating) journey are reviewed below.


Clean Code: A Handbook of Agile Software Craftsmanship by Robert C. Martin


In this book, Robert C. Martin, a software engineering legend, discusses the seemingly insignificant differences between bad and poorly-written codes. He explains which “symptoms” bad codes manifest and how to clean them.


Code Complete: A Practical Handbook of Software Construction by Steve McConnell


One of the first (and smartest) steps toward building quality code is getting this book. Here, the author summarized everything there is to know about constructing software. Since the book contains both the basics and the more advanced construction practices, everyone finds it useful, both beginners and pros.


Additional Resources for BSc Computer Science Students


BSc Computer Science books aren’t the only spring you should drink water from if you’re thirsty for knowledge on the subject.


Online Platforms and Courses


Online platforms and courses are great resources for those who want to expand their knowledge and learn how to cash it in. The internet is overflowing with great courses focusing on various aspects of computer science. Here are a few ideas to get you started:

  • Open Institute of Technology (OPIT) – The institute offers a comprehensive online BSc in Computer Science. Throughout the program, students get acquainted with everything computer science-related. After completing their studies, they’ll be able to land high-paying jobs.
  • Udemy and Coursera – Although not “official” institutes and universities, these platforms deserve a seat at the table. Both Udemy and Coursera offer quality computer science courses held by some of the most respected names in the industry.

Coding Practice Websites


You’ve read books, attended courses, and feel like you know everything there is to know about the theoretical part. But is there a way to put this theory into practice and see whether your codes work? The answer is yes! Practice makes perfect, and coding practice websites will become your best friends and help you conquer programming.

  • Coderbyte – Solve real-life coding issues and drive your skills to perfection. With over a dozen available programming languages, you can try out as many ideas as you’d like.
  • HackerRank – HackerRank is home to hundreds of coding challenges. Plus, it has leaderboards, so you can see how you compare to other coders. It’s also home to useful tutorials, and since the website is popular, you may even be able to land your dream job.

Computer Science Forums and Communities


Is there a better place for like-minded people to meet and discuss the topics they’re passionate about? Computer science forums and communities should be an important stop on your way to becoming an expert on the subject.


Tips for Success in BSc Computer Science


Success doesn’t happen overnight (at least for most people). If computer science is your true passion, here’s how to master it:

  • Focus on the basics to create a good foundation.
  • Put your thinking cap on and practice problem-solving and critical thinking skills.
  • Participate in group projects and collaborations (teamwork makes the dream work).
  • Keep up with the latest industry trends.
  • Gain valuable hands-on experience through internships.

Acquire Computer Science Knowledge Effectively


Although books don’t offer practical knowledge, they can be invaluable allies in setting a great theoretical foundation. By carefully choosing the best books and putting effort into developing your skills, you’ll become a pro in a jiff.

Related posts

Il Sole 24 Ore: Integrating Artificial Intelligence into the Enterprise – Challenges and Opportunities for CEOs and Management
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 14, 2025 6 min read

Source:


Expert Pierluigi Casale analyzes the adoption of AI by companies, the ethical and regulatory challenges and the differentiated approach between large companies and SMEs

By Gianni Rusconi

Easier said than done: to paraphrase the well-known proverb, and to place it in the increasingly large collection of critical issues and opportunities related to artificial intelligence, the task that CEOs and management have to adequately integrate this technology into the company is indeed difficult. Pierluigi Casale, professor at OPIT (Open Institute of Technology, an academic institution founded two years ago and specialized in the field of Computer Science) and technical consultant to the European Parliament for the implementation and regulation of AI, is among those who contributed to the definition of the AI ​​Act, providing advice on aspects of safety and civil liability. His task, in short, is to ensure that the adoption of artificial intelligence (primarily within the parliamentary committees operating in Brussels) is not only efficient, but also ethical and compliant with regulations. And, obviously, his is not an easy task.

The experience gained over the last 15 years in the field of machine learning and the role played in organizations such as Europol and in leading technology companies are the requirements that Casale brings to the table to balance the needs of EU bodies with the pressure exerted by American Big Tech and to preserve an independent approach to the regulation of artificial intelligence. A technology, it is worth remembering, that implies broad and diversified knowledge, ranging from the regulatory/application spectrum to geopolitical issues, from computational limitations (common to European companies and public institutions) to the challenges related to training large-format language models.

CEOs and AI

When we specifically asked how CEOs and C-suites are “digesting” AI in terms of ethics, safety and responsibility, Casale did not shy away, framing the topic based on his own professional career. “I have noticed two trends in particular: the first concerns companies that started using artificial intelligence before the AI ​​Act and that today have the need, as well as the obligation, to adapt to the new ethical framework to be compliant and avoid sanctions; the second concerns companies, like the Italian ones, that are only now approaching this topic, often in terms of experimental and incomplete projects (the expression used literally is “proof of concept”, ed.) and without these having produced value. In this case, the ethical and regulatory component is integrated into the adoption process.”

In general, according to Casale, there is still a lot to do even from a purely regulatory perspective, due to the fact that there is not a total coherence of vision among the different countries and there is not the same speed in implementing the indications. Spain, in this regard, is setting an example, having established (with a royal decree of 8 November 2023) a dedicated “sandbox”, i.e. a regulatory experimentation space for artificial intelligence through the creation of a controlled test environment in the development and pre-marketing phase of some artificial intelligence systems, in order to verify compliance with the requirements and obligations set out in the AI ​​Act and to guide companies towards a path of regulated adoption of the technology.

Read the full article below (in Italian):

Read the article
The Lucky Future: How AI Aims to Change Everything
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 10, 2025 7 min read

There is no question that the spread of artificial intelligence (AI) is having a profound impact on nearly every aspect of our lives.

But is an AI-powered future one to be feared, or does AI offer the promise of a “lucky future.”

That “lucky future” prediction comes from Zorina Alliata, principal AI Strategist at Amazon and AI faculty member at Georgetown University and the Open Institute of Technology (OPIT), in her recent webinar “The Lucky Future: How AI Aims to Change Everything” (February 18, 2025).

However, according to Alliata, such a future depends on how the technology develops and whether strategies can be implemented to mitigate the risks.

How AI Aims to Change Everything

For many people, AI is already changing the way they work. However, more broadly, AI has profoundly impacted how we consume information.

From the curation of a social media feed and the summary answer to a search query from Gemini at the top of your Google results page to the AI-powered chatbot that resolves your customer service issues, AI has quickly and quietly infiltrated nearly every aspect of our lives in the past few years.

While there have been significant concerns recently about the possibly negative impact of AI, Alliata’s “lucky future” prediction takes these fears into account. As she detailed in her webinar, a future with AI will have to take into consideration:

  • Where we are currently with AI and future trajectories
  • The impact AI is having on the job landscape
  • Sustainability concerns and ethical dilemmas
  • The fundamental risks associated with current AI technology

According to Alliata, by addressing these risks, we can craft a future in which AI helps individuals better align their needs with potential opportunities and limitations of the new technology.

Industry Applications of AI

While AI has been in development for decades, Alliata describes a period known as the “AI winter” during which educators like herself studied AI technology, but hadn’t arrived at a point of practical applications. Contributing to this period of uncertainty were concerns over how to make AI profitable as well.

That all changed about 10-15 years ago when machine learning (ML) improved significantly. This development led to a surge in the creation of business applications for AI. Beginning with automation and robotics for repetitive tasks, the technology progressed to data analysis – taking a deep dive into data and finding not only new information but new opportunities as well.

This further developed into generative AI capable of completing creative tasks. Generative AI now produces around one billion words per day, compared to the one trillion produced by humans.

We are now at the stage where AI can complete complex tasks involving multiple steps. In her webinar, Alliata gave the example of a team creating storyboards and user pathways for a new app they wanted to develop. Using photos and rough images, they were able to use AI to generate the code for the app, saving hundreds of hours of manpower.

The next step in AI evolution is Artificial General Intelligence (AGI), an extremely autonomous level of AI that can replicate or in some cases exceed human intelligence. While the benefits of such technology may readily be obvious to some, the industry itself is divided as to not only whether this form of AI is close at hand or simply unachievable with current tools and technology, but also whether it should be developed at all.

This unpredictability, according to Alliata, represents both the excitement and the concerns about AI.

The AI Revolution and the Job Market

According to Alliata, the job market is the next area where the AI revolution can profoundly impact our lives.

To date, the AI revolution has not resulted in widespread layoffs as initially feared. Instead of making employees redundant, many jobs have evolved to allow them to work alongside AI. In fact, AI has also created new jobs such as AI prompt writer.

However, the prediction is that as AI becomes more sophisticated, it will need less human support, resulting in a greater job churn. Alliata shared statistics from various studies predicting as many as 27% of all jobs being at high risk of becoming redundant from AI and 40% of working hours being impacted by language learning models (LLMs) like Chat GPT.

Furthermore, AI may impact some roles and industries more than others. For example, one study suggests that in high-income countries, 8.5% of jobs held by women were likely to be impacted by potential automation, compared to just 3.9% of jobs held by men.

Is AI Sustainable?

While Alliata shared the many ways in which AI can potentially save businesses time and money, she also highlighted that it is an expensive technology in terms of sustainability.

Conducting AI training and processing puts a heavy strain on central processing units (CPUs), requiring a great deal of energy. According to estimates, Chat GPT 3 alone uses as much electricity per day as 121 U.S. households in an entire year. Gartner predicts that by 2030, AI could consume 3.5% of the world’s electricity.

To reduce the energy requirements, Alliata highlighted potential paths forward in terms of hardware optimization, such as more energy-efficient chips, greater use of renewable energy sources, and algorithm optimization. For example, models that can be applied to a variety of uses based on prompt engineering and parameter-efficient tuning are more energy-efficient than training models from scratch.

Risks of Using Generative AI

While Alliata is clearly an advocate for the benefits of AI, she also highlighted the risks associated with using generative AI, particularly LLMs.

  • Uncertainty – While we rely on AI for answers, we aren’t always sure that the answers provided are accurate.
  • Hallucinations – Technology designed to answer questions can make up facts when it does not know the answer.
  • Copyright – The training of LLMs often uses copyrighted data for training without permission from the creator.
  • Bias – Biased data often trains LLMs, and that bias becomes part of the LLM’s programming and production.
  • Vulnerability – Users can bypass the original functionality of an LLM and use it for a different purpose.
  • Ethical Risks – AI applications pose significant ethical risks, including the creation of deepfakes, the erosion of human creativity, and the aforementioned risks of unemployment.

Mitigating these risks relies on pillars of responsibility for using AI, including value alignment of the application, accountability, transparency, and explainability.

The last one, according to Alliata, is vital on a human level. Imagine you work for a bank using AI to assess loan applications. If a loan is denied, the explanation you give to the customer can’t simply be “Because the AI said so.” There needs to be firm and explainable data behind the reasoning.

OPIT’s Masters in Responsible Artificial Intelligence explores the risks and responsibilities inherent in AI, as well as others.

A Lucky Future

Despite the potential risks, Alliata concludes that AI presents even more opportunities and solutions in the future.

Information overload and decision fatigue are major challenges today. Imagine you want to buy a new car. You have a dozen features you desire, alongside hundreds of options, as well as thousands of websites containing the relevant information. AI can help you cut through the noise and narrow the information down to what you need based on your specific requirements.

Alliata also shared how AI is changing healthcare, allowing patients to understand their health data, make informed choices, and find healthcare professionals who meet their needs.

It is this functionality that can lead to the “lucky future.” Personalized guidance based on an analysis of vast amounts of data means that each person is more likely to make the right decision with the right information at the right time.

Read the article