Data mining is an essential process for many businesses, including McDonald’s and Amazon. It involves analyzing huge chunks of unprocessed information to discover valuable insights. It’s no surprise large organizations rely on data mining, considering it helps them optimize customer service, reduce costs, and streamline their supply chain management.

Although it sounds simple, data mining is comprised of numerous procedures that help professionals extract useful information, one of which is classification. The role of this process is critical, as it allows data specialists to organize information for easier analysis.

This article will explore the importance of classification in greater detail. We’ll explain classification in data mining and the most common techniques.

Classification in Data Mining

Answering your question, “What is classification in data mining?” isn’t easy. To help you gain a better understanding of this term, we’ll cover the definition, purpose, and applications of classification in different industries.

Definition of Classification

Classification is the process of grouping related bits of information in a particular data set. Whether you’re dealing with a small or large set, you can utilize classification to organize the information more easily.

Purpose of Classification in Data Mining

Defining the classification of data mining systems is important, but why exactly do professionals use this method? The reason is simple – classification “declutters” a data set. It makes specific information easier to locate.

In this respect, think of classification as tidying up your bedroom. By organizing your clothes, shoes, electronics, and other items, you don’t have to waste time scouring the entire place to find them. They’re neatly organized and retrievable within seconds.

Applications of Classification in Various Industries

Here are some of the most common applications of data classification to help further demystify this process:

  • Healthcare – Doctors can use data classification for numerous reasons. For example, they can group certain indicators of a disease for improved diagnostics. Likewise, classification comes in handy when grouping patients by age, condition, and other key factors.
  • Finance – Data classification is essential for financial institutions. Banks can group information about consumers to find lenders more easily. Furthermore, data classification is crucial for elevating security.
  • E-commerce – A key feature of online shopping platforms is recommending your next buy. They do so with the help of data classification. A system can analyze your previous decisions and group the related information to enhance recommendations.
  • Weather forecast – Several considerations come into play during a weather forecast, including temperatures and humidity. Specialists can use a data mining platform to classify these considerations.

Techniques for Classification in Data Mining

Even though all data classification has a common goal (making information easily retrievable), there are different ways to accomplish it. In other words, you can incorporate an array of classification techniques in data mining.

Decision Trees

The decision tree method might be the most widely used classification technique. It’s a relatively simple yet effective method.

Overview of Decision Trees

Decision trees are like, well, trees, branching out in different directions. In the case of data mining, these trees have two branches: true and false. This method tells you whether a feature is true or false, allowing you to organize virtually any information.

Advantages and Disadvantages

Advantages:

  • Preparing information in decision trees is simple.
  • No normalization or scaling is involved.
  • It’s easy to explain to non-technical staff.

Disadvantages:

  • Even the tiniest of changes can transform the entire structure.
  • Training decision tree-based models can be time-consuming.
  • It can’t predict continuous values.

Support Vector Machines (SVM)

Another popular classification involves the use of support vector machines.

Overview of SVM

SVMs are algorithms that divide a dataset into two groups. It does so while ensuring there’s maximum distance from the margins of both groups. Once the algorithm categorizes information, it provides a clear boundary between the two groups.

Advantages and Disadvantages

Advantages:

  • It requires minimal space.
  • The process consumes little memory.

Disadvantages:

  • It may not work well in large data sets.
  • If the dataset has more features than training data samples, the algorithm might not be very accurate.

Naïve Bayes Classifier

The Naïve Bayes is also a viable option for classifying information.

Overview of Naïve Bayes Classifier

The Naïve Bayes method is a robust classification solution that makes predictions based on historical information. It tells you the likelihood of an event after analyzing how many times a similar (or the same) event has taken place. The most frequent application of this algorithm is distinguishing non-spam emails from billions of spam messages.

Advantages and Disadvantages

Advantages:

  • It’s a fast, time-saving algorithm.
  • Minimal training data is needed.
  • It’s perfect for problems with multiple classes.

Disadvantages:

  • Smoothing techniques are often required to fix noise.
  • Estimates can be inaccurate.

K-Nearest Neighbors (KNN)

Although algorithms used for classification in data mining are complex, some have a simple premise. KNN is one of those algorithms.

Overview of KNN

Like many other algorithms, KNN starts with training data. From there, it determines the distance between particular objects. Items that are close to each other are considered related, which means that this system uses proximity to classify data.

Advantages and Disadvantages

Advantages:

  • The implementation is simple.
  • You can add new information whenever necessary without affecting the original data.

Disadvantages:

  • The system can be computationally intensive, especially with large data sets.
  • Calculating distances in large data sets is also expensive.

Artificial Neural Networks (ANN)

You might be wondering, “Is there a data classification technique that works like our brain?” Artificial neural networks may be the best example of such methods.

Overview of ANN

ANNs are like your brain. Just like the brain has connected neurons, ANNs have artificial neurons known as nodes that are linked to each other. Classification methods relying on this technique use the nodes to determine the category to which an object belongs.

Advantages and Disadvantages

Advantages:

  • It can be perfect for generalization in natural language processing and image recognition since they can recognize patterns.
  • The system works great for large data sets, as they render large chunks of information rapidly.

Disadvantages:

  • It needs lots of training information and is expensive.
  • The system can potentially identify non-existent patterns, which can make it inaccurate.

Comparison of Classification Techniques

It’s difficult to weigh up data classification techniques because there are significant differences. That’s not to say analyzing these models is like comparing apples to oranges. There are ways to determine which techniques outperform others when classifying particular information:

  • ANNs generally work better than SVMs for making predictions.
  • Decision trees are harder to design than some other, more complex solutions, such as ANNs.
  • KNNs are typically more accurate than Naïve Bayes, which is rife with imprecise estimates.

Systems for Classification in Data Mining

Classifying information manually would be time-consuming. Thankfully, there are robust systems to help automate different classification techniques in data mining.

Overview of Data Mining Systems

Data mining systems are platforms that utilize various methods of classification in data mining to categorize data. These tools are highly convenient, as they speed up the classification process and have a multitude of applications across industries.

Popular Data Mining Systems for Classification

Like any other technology, classification of data mining systems becomes easier if you use top-rated tools:

WEKA

How often do you need to add algorithms from your Java environment to classify a data set? If you do it regularly, you should use a tool specifically designed for this task – WEKA. It’s a collection of algorithms that performs a host of data mining projects. You can apply the algorithms to your own code or directly into the platform.

RapidMiner

If speed is a priority, consider integrating RapidMiner into your environment. It produces highly accurate predictions in double-quick time using deep learning and other advanced techniques in its Java-based architecture.

Orange

Open-source platforms are popular, and it’s easy to see why when you consider Orange. It’s an open-source program with powerful classification and visualization tools.

KNIME

KNIME is another open-source tool you can consider. It can help you classify data by revealing hidden patterns in large amounts of information.

Apache Mahout

Apache Mahout allows you to create algorithms of your own. Each algorithm developed is scalable, enabling you to transfer your classification techniques to higher levels.

Factors to Consider When Choosing a Data Mining System

Choosing a data mining system is like buying a car. You need to ensure the product has particular features to make an informed decision:

  • Data classification techniques
  • Visualization tools
  • Scalability
  • Potential issues
  • Data types

The Future of Classification in Data Mining

No data mining discussion would be complete without looking at future applications.

Emerging Trends in Classification Techniques

Here are the most important data classification facts to keep in mind for the foreseeable future:

  • The amount of data should rise to 175 billion terabytes by 2025.
  • Some governments may lift certain restrictions on data sharing.
  • Data automation is expected to be further automated.

Integration of Classification With Other Data Mining Tasks

Classification is already an essential task. Future platforms may combine it with clustering, regression, sequential patterns, and other techniques to optimize the process. More specifically, experts may use classification to better organize data for subsequent data mining efforts.

The Role of Artificial Intelligence and Machine Learning in Classification

Nearly 20% of analysts predict machine learning and artificial intelligence will spearhead the development of classification strategies. Hence, mastering these two technologies may become essential.

Data Knowledge Declassified

Various methods for data classification in data mining, like decision trees and ANNs, are a must-have in today’s tech-driven world. They help healthcare professionals, banks, and other industry experts organize information more easily and make predictions.

To explore this data mining topic in greater detail, consider taking a course at an accredited institution. You’ll learn the ins and outs of data classification as well as expand your career options.

Related posts

E-book: AI Agents in Education
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Sep 15, 2025 3 min read

From personalization to productivity: AI at the heart of the educational experience.

Click this link to read and download the e-book.

At its core, teaching is a simple endeavour. The experienced and learned pass on their knowledge and wisdom to new generations. Nothing has changed in that regard. What has changed is how new technologies emerge to facilitate that passing on of knowledge. The printing press, computers, the internet – all have transformed how educators teach and how students learn.

Artificial intelligence (AI) is the next game-changer in the educational space.

Specifically, AI agents have emerged as tools that utilize all of AI’s core strengths, such as data gathering and analysis, pattern identification, and information condensing. Those strengths have been refined, first into simple chatbots capable of providing answers, and now into agents capable of adapting how they learn and adjusting to the environment in which they’re placed. This adaptability, in particular, makes AI agents vital in the educational realm.

The reasons why are simple. AI agents can collect, analyse, and condense massive amounts of educational material across multiple subject areas. More importantly, they can deliver that information to students while observing how the students engage with the material presented. Those observations open the door for tweaks. An AI agent learns alongside their student. Only, the agent’s learning focuses on how it can adapt its delivery to account for a student’s strengths, weaknesses, interests, and existing knowledge.

Think of an AI agent like having a tutor – one who eschews set lesson plans in favour of an adaptive approach designed and tweaked constantly for each specific student.

In this eBook, the Open Institute of Technology (OPIT) will take you on a journey through the world of AI agents as they pertain to education. You will learn what these agents are, how they work, and what they’re capable of achieving in the educational sector. We also explore best practices and key approaches, focusing on how educators can use AI agents to the benefit of their students. Finally, we will discuss other AI tools that both complement and enhance an AI agent’s capabilities, ensuring you deliver the best possible educational experience to your students.

Read the article
OPIT Supporting a New Generation of Cybersecurity Leaders
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Aug 28, 2025 5 min read

The Open Institute of Technology (OPIT) began enrolling students in 2023 to help bridge the skills gap between traditional university education and the requirements of the modern workplace. OPIT’s MSc courses aim to help professionals make a greater impact on their workplace through technology.

OPIT’s courses have become popular with business leaders hoping to develop a strong technical foundation to understand technologies, such as artificial intelligence (AI) and cybersecurity, that are shaping their industry. But OPIT is also attracting professionals with strong technical expertise looking to engage more deeply with the strategic side of digital innovation. This is the story of one such student, Obiora Awogu.

Meet Obiora

Obiora Awogu is a cybersecurity expert from Nigeria with a wealth of credentials and experience from working in the industry for a decade. Working in a lead data security role, he was considering “what’s next” for his career. He was contemplating earning an MSc to add to his list of qualifications he did not yet have, but which could open important doors. He discussed the idea with his mentor, who recommended OPIT, where he himself was already enrolled in an MSc program.

Obiora started looking at the program as a box-checking exercise, but quickly realized that it had so much more to offer. As well as being a fully EU-accredited course that could provide new opportunities with companies around the world, he recognized that the course was designed for people like him, who were ready to go from building to leading.

OPIT’s MSc in Cybersecurity

OPIT’s MSc in Cybersecurity launched in 2024 as a fully online and flexible program ideal for busy professionals like Obiora who want to study without taking a career break.

The course integrates technical and leadership expertise, equipping students to not only implement cybersecurity solutions but also lead cybersecurity initiatives. The curriculum combines technical training with real-world applications, emphasizing hands-on experience and soft skills development alongside hard technical know-how.

The course is led by Tom Vazdar, the Area Chair for Cybersecurity at OPIT, as well as the Chief Security Officer at Erste Bank Croatia and an Advisory Board Member for EC3 European Cybercrime Center. He is representative of the type of faculty OPIT recruits, who are both great teachers and active industry professionals dealing with current challenges daily.

Experts such as Matthew Jelavic, the CEO at CIM Chartered Manager Canada and President of Strategy One Consulting; Mahynour Ahmed, Senior Cloud Security Engineer at Grant Thornton LLP; and Sylvester Kaczmarek, former Chief Scientific Officer at We Space Technologies, join him.

Course content includes:

  • Cybersecurity fundamentals and governance
  • Network security and intrusion detection
  • Legal aspects and compliance
  • Cryptography and secure communications
  • Data analytics and risk management
  • Generative AI cybersecurity
  • Business resilience and response strategies
  • Behavioral cybersecurity
  • Cloud and IoT security
  • Secure software development
  • Critical thinking and problem-solving
  • Leadership and communication in cybersecurity
  • AI-driven forensic analysis in cybersecurity

As with all OPIT’s MSc courses, it wraps up with a capstone project and dissertation, which sees students apply their skills in the real world, either with their existing company or through apprenticeship programs. This not only gives students hands-on experience, but also helps them demonstrate their added value when seeking new opportunities.

Obiora’s Experience

Speaking of his experience with OPIT, Obiora said that it went above and beyond what he expected. He was not surprised by the technical content, in which he was already well-versed, but rather the change in perspective that the course gave him. It helped him move from seeing himself as someone who implements cybersecurity solutions to someone who could shape strategy at the highest levels of an organization.

OPIT’s MSc has given Obiora the skills to speak to boards, connect risk with business priorities, and build organizations that don’t just defend against cyber risks but adapt to a changing digital world. He commented that studying at OPIT did not give him answers; instead, it gave him better questions and the tools to lead. Of course, it also ticks the MSc box, and while that might not be the main reason for studying at OPIT, it is certainly a clear benefit.

Obiora has now moved into a leading Chief Information Security Officer Role at MoMo, Payment Service Bank for MTN. There, he is building cyber-resilient financial systems, contributing to public-private partnerships, and mentoring the next generation of cybersecurity experts.

Leading Cybersecurity in Africa

As well as having a significant impact within his own organization, studying at OPIT has helped Obiora develop the skills and confidence needed to become a leader in the cybersecurity industry across Africa.

In March 2025, Obiora was featured on the cover of CIO Africa Magazine and was then a panelist on the “Future of Cybersecurity Careers in the Age of Generative AI” for Comercio Ltd. The Lagos Chamber of Commerce and Industry also invited him to speak on Cybersecurity in Africa.

Obiora recently presented the keynote speech at the Hackers Secret Conference 2025 on “Code in the Shadows: Harnessing the Human-AI Partnership in Cybersecurity.” In the talk, he explored how AI is revolutionizing incident response, enhancing its speed, precision, and proactivity, and improving on human-AI collaboration.

An OPIT Success Story

Talking about Obiora’s success, the OPIT Area Chair for Cybersecurity said:

“Obiora is a perfect example of what this program was designed for – experienced professionals ready to scale their impact beyond operations. It’s been inspiring to watch him transform technical excellence into strategic leadership. Africa’s cybersecurity landscape is stronger with people like him at the helm. Bravo, Obiora!”

Learn more about OPIT’s MSc in Cybersecurity and how it can support the next steps of your career.

Read the article