Computer architecture forms the backbone of computer science. So, it comes as no surprise it’s one of the most researched fields of computing.


But what is computer architecture, and why does it matter?


Basically, computer architecture dictates every aspect of a computer’s functioning, from how it stores data to what it displays on the interface. Not to mention how the hardware and software components connect and interact.


With this in mind, it isn’t difficult to realize the importance of this structure. In fact, computer scientists did this even before they knew what to call it. The first documented computer architecture can be traced back to 1936, 23 years before the term “architecture” was first used when describing a computer. Lyle R. Johnson, an IBM senior staff member, had this honor, realizing that the word organization just doesn’t cut it.


Now that you know why you should care about it, let’s define computer architecture in more detail and outline everything you need to know about it.


Basic Components of Computer Architecture


Computer architecture is an elaborate system where each component has its place and function. You’re probably familiar with some of the basic computer architecture components, such as the CPU and memory. But do you know how those components work together? If not, we’ve got you covered.


Central Processing Unit (CPU)


The central processing unit (CPU) is at the core of any computer architecture. This hardware component only needs instructions written as binary bits to control all its surrounding components.


Think of the CPU as the conductor in an orchestra. Without the conductor, the choir is still there, but they’re waiting for instructions.


Without a functioning CPU, the other components are still there, but there’s no computing.


That’s why the CPU’s components are so important.


Arithmetic Logic Unit (ALU)


Since the binary bits used as instructions by the CPU are numbers, the unit needs an arithmetic component to manipulate them.


That’s where the arithmetic logic unit, or ALU, comes into play.


The ALU is the one that receives the binary bits. Then, it performs an operation on one or more of them. The most common operations include addition, subtraction, AND, OR, and NOT.


Control Unit (CU)


As the name suggests, the control unit (CU) controls all the components of basic computer architecture. It transfers data to and from the ALU, thus dictating how each component behaves.


Registers


Registers are the storage units used by the CPU to hold the current data the ALU is manipulating. Each CPU has a limited number of these registers. For this reason, they can only store a limited amount of data temporarily.


Memory


Storing data is the main purpose of the memory of a computer system. The data in question can be instructions issued by the CPU or larger amounts of permanent data. Either way, a computer’s memory is never empty.


Traditionally, this component can be broken into primary and secondary storage.


Primary Memory


Primary memory occupies a central position in a computer system. It’s the only memory unit that can communicate with the CPU directly. It stores only programs and data currently in use.


There are two types of primary memory:


  • RAM (Random Access Memory). In computer architecture, this is equivalent to short-term memory. RAM helps start the computer and only stores data as long as the machine is on and data is being used.
  • ROM (Read Only Memory). ROM stores the data used to operate the system. Due to the importance of this data, the ROM stores information even when you turn off the computer.

Secondary Memory


With secondary memory, or auxiliary memory, there’s room for larger amounts of data (which is also permanent). However, this also means that this memory is significantly slower than its primary counterpart.


When it comes to secondary memory, there’s no shortage of choices. There are magnetic discs (hard disk drives (HDDs) and solid-state drives (SSDs)) that provide fast access to stored data. And let’s not forget about optical discs (CD-ROMs and DVDs) that offer portable data storage.


Input/Output (I/O) Devices


The input/output devices allow humans to communicate with a computer. They do so by delivering or receiving data as necessary.


You’re more than likely familiar with the most widely used input devices – the keyboard and the mouse. When it comes to output devices, it’s pretty much the same. The monitor and printer are at the forefront.


Buses


When the CPU wants to communicate with other internal components, it relies on buses.


Data buses are physical signal lines that carry data. Most computer systems use three of these lines:


  • Data bus – Transmitting data from the CPU to memory and I/O devices and vice versa
  • Address bus – Carrying the address that points to the location the CPU wants to access
  • Control bus – Transferring control from one component to the other

Types of Computer Architecture


There’s more than one type of computer architecture. These types mostly share the same base components. However, the setup of these components is what makes them differ.


Von Neumann Architecture


The Von Neumann architecture was proposed by one of the originators of computer architecture as a concept, John Von Neumann. Most modern computers follow this computer architecture.


The Von Neumann architecture has several distinguishing characteristics:


  • All instructions are carried out sequentially.
  • It doesn’t differentiate between data and instruction. They’re stored in the same memory unit.
  • The CPU performs one operation at a time.

Since data and instructions are located in the same place, fetching them is simple and efficient. These two adjectives can describe working with the Von Neumann architecture in general, making it such a popular choice.


Still, there are some disadvantages to keep in mind. For starters, the CPU is often idle since it can only access one bus at a time. If an error causes a mix-up between data and instructions, you can lose important data. Also, defective programs sometimes fail to release memory, causing your computer to crash.


Harvard Architecture


Harvard architecture was named after the famed university. Or, to be more precise, after an IBM computer called “Harvard Mark I” located at the university.


The main difference between this computer architecture and the Von Neumann model is that the Harvard architecture separates the data from the instructions. Accordingly, it allocates separate data, addresses, and control buses for the separate memories.


The biggest advantage of this setup is that the buses can fetch data concurrently, minimizing idle time. The separate buses also reduce the chance of data corruption.


However, this setup also requires a more complex architecture that can be challenging to develop and implement.


Modified Harvard Architecture


Today, only specialty computers use the pure form of Harvard architecture. As for other machines, a modified Harvard architecture does the trick. These modifications aim to soften the rigid separation between data and instructions.


RISC and CISC Architectures


When it comes to processor architecture, there are two primary approaches.


The CISC (Complex Instruction Set Computer) processors have a single processing unit and are pretty straightforward. They tackle one task at a time. As a result, they use less memory. However, they also need more time to complete an instruction.


Over time, the speed of these processors became a problem. This led to a processor redesign, resulting in the RISC architecture.


The new and improved RISC (Reduced Instruction Set Computer) processors feature larger registers and keep frequently used variables within the processor. Thanks to these handy functionalities, they can operate much more quickly.


Instruction Set Architecture (ISA)


Instruction set architecture (ISA) defines the instructions that the processor can read and act upon. This means ISA decides which software can be installed on a particular processor and how efficiently it can perform tasks.


There are three types of instruction set architecture. These types differ based on the placement of instructions, and their names are pretty self-explanatory. For stack-based ISA, the instructions are placed in the stack, a memory unit within the address register. The same principle applies for accumulator-based ISA (a type of register in the CPU) and register-based ISA (multiple registers within the system).


The register-based ISA is most commonly used in modern machines. You’ve probably heard of some of the most popular examples. For CISC architecture, there are x86 and MC68000. As for RISC, SPARC, MIPS, and ARM stand out.


Pipelining and Parallelism in Computer Architecture


In computer architecture, pipelining and parallelism are methods used to speed up processing.


Pipelining refers to overlapping multiple instructions and processing them simultaneously. This couldn’t be possible without a pipeline-like structure. Imagine a factory assembly line, and you’ll understand how pipelining works instantly.


This method significantly increases the number of processed instructions and comes in two types:


  • Instruction pipelines – Used for fixed-point multiplication, floating-point operations, and similar calculations
  • Arithmetic pipelines – Used for reading consecutive instructions from memory

Parallelism entails using multiple processors or cores to process data simultaneously. Thanks to this collaborative approach, large amounts of data can be processed quickly.


Computer architecture employs two types of parallelism:


  • Data parallelism – Executing the same task with multiple cores and different sets of data
  • Task parallelism – Performing different tasks with multiple cores and the same or different data

Multicore processors are crucial for increasing the efficiency of parallelism as a method.


Memory Hierarchy and Cache


In computer system architecture, memory hierarchy is essential for minimizing the time it takes to access the memory units. It refers to separating memory units based on their response times.


The most common memory hierarchy goes as follows:


  • Level 1: Processor registers
  • Level 2: Cache memory
  • Level 3: Primary memory
  • Level 4: Secondary memory

The cache memory is a small and fast memory located close to a processor core. The CPU uses it to reduce the time and energy needed to access data from the primary memory.


Cache memory can be further broken into levels.


  • L1 cache (the primary cache) – The fastest cache unit in the system
  • L2 cache (the secondary cache) – The slower but more spacious option than Level 1
  • L3 cache (a specialized cache) – The largest and the slowest cache in the system used to improve the performance of the first two levels

When it comes to determining where the data will be stored in the cache memory, three mapping techniques are employed:


  • Direct mapping – Each memory block is mapped to one pre-determined cache location
  • Associative mapping – Each memory block is mapped to a single location, but it can be any location
  • Set associative mapping – Each memory block is mapped to a subset of locations

The performance of cache memory directly impacts the overall performance of a computing system. The following cache replacement policies are used to better process big data applications:


  • FIFO (first in, first out) ­– The memory block first to enter the primary memory gets replaced first
  • LRU (least recently used) – The least recently used page is the first to be discarded
  • LFU (least frequently used) – The least frequently used element gets eliminated first

Input/Output (I/O) Systems


The input/output or I/O systems are designed to receive and send data to a computer. Without these processing systems, the computer wouldn’t be able to communicate with people and other systems and devices.


There are several types of I/O systems:


  • Programmed I/O – The CPU directly issues a command to the I/O module and waits for it to be executed
  • Interrupt-Driven I/O – The CPU moves on to other tasks after issuing a command to the I/O system
  • Direct Memory Access (DMA) – The data is transferred between the memory and I/O devices without passing through the CPU

There are three standard I/O interfaces used for physically connecting hardware devices to a computer:


  • Peripheral Component Interconnect (PCI)
  • Small Computer System Interface (SATA)
  • Universal Serial Bus (USB)

Power Consumption and Performance in Computer Architecture


Power consumption has become one of the most important considerations when designing modern computer architecture. Failing to consider this aspect leads to power dissipation. This, in turn, results in higher operating costs and a shorter lifespan for the machine.


For this reason, the following techniques for reducing power consumption are of utmost importance:


  • Dynamic Voltage and Frequency Scaling (DVFS) – Scaling down the voltage based on the required performance
  • Clock gating – Shutting off the clock signal when the circuit isn’t in use
  • Power gating – Shutting off the power to circuit blocks when they’re not in use

Besides power consumption, performance is another crucial consideration in computer architecture. The performance is measured as follows:


  • Instructions per second (IPS) – Measuring efficiency at any clock frequency
  • Floating-point operations per second (FLOPS) – Measuring the numerical computing performance
  • Benchmarks – Measuring how long the computer takes to complete a series of test programs

Emerging Trends in Computer Architecture


Computer architecture is continuously evolving to meet modern computing needs. Keep your eye out on these fascinating trends:


  • Quantum computing (relying on the laws of quantum mechanics to tackle complex computing problems)
  • Neuromorphic computing (modeling the computer architecture components on the human brain)
  • Optical computing (using photons instead of electrons in digital computation for higher performance)
  • 3D chip stacking (using 3D instead of 2D chips as they’re faster, take up less space, and require less power)

A One-Way Ticket to Computing Excellence


As you can tell, computer architecture directly affects your computer’s speed and performance. This launches it to the top of priorities when building this machine.


High-performance computers might’ve been nice-to-haves at some point. But in today’s digital age, they’ve undoubtedly become a need rather than a want.


In trying to keep up with this ever-changing landscape, computer architecture is continuously evolving. The end goal is to develop an ideal system in terms of speed, memory, and interconnection of components.


And judging by the current dominant trends in this field, that ideal system is right around the corner!

Related posts

Il Sole 24 Ore: Integrating Artificial Intelligence into the Enterprise – Challenges and Opportunities for CEOs and Management
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 14, 2025 6 min read

Source:


Expert Pierluigi Casale analyzes the adoption of AI by companies, the ethical and regulatory challenges and the differentiated approach between large companies and SMEs

By Gianni Rusconi

Easier said than done: to paraphrase the well-known proverb, and to place it in the increasingly large collection of critical issues and opportunities related to artificial intelligence, the task that CEOs and management have to adequately integrate this technology into the company is indeed difficult. Pierluigi Casale, professor at OPIT (Open Institute of Technology, an academic institution founded two years ago and specialized in the field of Computer Science) and technical consultant to the European Parliament for the implementation and regulation of AI, is among those who contributed to the definition of the AI ​​Act, providing advice on aspects of safety and civil liability. His task, in short, is to ensure that the adoption of artificial intelligence (primarily within the parliamentary committees operating in Brussels) is not only efficient, but also ethical and compliant with regulations. And, obviously, his is not an easy task.

The experience gained over the last 15 years in the field of machine learning and the role played in organizations such as Europol and in leading technology companies are the requirements that Casale brings to the table to balance the needs of EU bodies with the pressure exerted by American Big Tech and to preserve an independent approach to the regulation of artificial intelligence. A technology, it is worth remembering, that implies broad and diversified knowledge, ranging from the regulatory/application spectrum to geopolitical issues, from computational limitations (common to European companies and public institutions) to the challenges related to training large-format language models.

CEOs and AI

When we specifically asked how CEOs and C-suites are “digesting” AI in terms of ethics, safety and responsibility, Casale did not shy away, framing the topic based on his own professional career. “I have noticed two trends in particular: the first concerns companies that started using artificial intelligence before the AI ​​Act and that today have the need, as well as the obligation, to adapt to the new ethical framework to be compliant and avoid sanctions; the second concerns companies, like the Italian ones, that are only now approaching this topic, often in terms of experimental and incomplete projects (the expression used literally is “proof of concept”, ed.) and without these having produced value. In this case, the ethical and regulatory component is integrated into the adoption process.”

In general, according to Casale, there is still a lot to do even from a purely regulatory perspective, due to the fact that there is not a total coherence of vision among the different countries and there is not the same speed in implementing the indications. Spain, in this regard, is setting an example, having established (with a royal decree of 8 November 2023) a dedicated “sandbox”, i.e. a regulatory experimentation space for artificial intelligence through the creation of a controlled test environment in the development and pre-marketing phase of some artificial intelligence systems, in order to verify compliance with the requirements and obligations set out in the AI ​​Act and to guide companies towards a path of regulated adoption of the technology.

Read the full article below (in Italian):

Read the article
CCN: Australia Tightens Crypto Oversight as Exchanges Expand, Testing Industry’s Appetite for Regulation
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Mar 31, 2025 3 min read

Source:

  • CCN, published on March 29th, 2025

By Kurt Robson

Over the past few months, Australia’s crypto industry has undergone a rapid transformation following the government’s proposal to establish a stricter set of digital asset regulations.

A series of recent enforcement measures and exchange launches highlight the growing maturation of Australia’s crypto landscape.

Experts remain divided on how the new rules will impact the country’s burgeoning digital asset industry.

New Crypto Regulation

On March 21, the Treasury Department said that crypto exchanges and custody services will now be classified under similar rules as other financial services in the country.

“Our legislative reforms will extend existing financial services laws to key digital asset platforms, but not to all of the digital asset ecosystem,” the Treasury said in a statement.

The rules impose similar regulations as other financial services in the country, such as obtaining a financial license, meeting minimum capital requirements, and safeguarding customer assets.

The proposal comes as Australian Prime Minister Anthony Albanese’s center-left Labor government prepares for a federal election on May 17.

Australia’s opposition party, led by Peter Dutton, has also vowed to make crypto regulation a top priority of the government’s agenda if it wins.

Australia’s Crypto Growth

Triple-A data shows that 9.6% of Australians already own digital assets, with some experts believing new rules will push further adoption.

Europe’s largest crypto exchange, WhiteBIT, announced it was entering the Australian market on Wednesday, March 26.

The company said that Australia was “an attractive landscape for crypto businesses” despite its complexity.

In March, Australia’s Swyftx announced it was acquiring New Zealand’s largest cryptocurrency exchange for an undisclosed sum.

According to the parties, the merger will create the second-largest platform in Australia by trading volume.

“Australia’s new regulatory framework is akin to rolling out the welcome mat for cryptocurrency exchanges,” Alexander Jader, professor of Digital Business at the Open Institute of Technology, told CCN.

“The clarity provided by these regulations is set to attract a wave of new entrants,” he added.

Jader said regulatory clarity was “the lifeblood of innovation.” He added that the new laws can expect an uptick “in both local and international exchanges looking to establish a foothold in the market.”

However, Zoe Wyatt, partner and head of Web3 and Disruptive Technology at Andersen LLP, believes that while the new rules will benefit more extensive exchanges looking for more precise guidelines, they will not “suddenly turn Australia into a global crypto hub.”

“The Web3 community is still largely looking to the U.S. in anticipation of a more crypto-friendly stance from the Trump administration,” Wyatt added.

Read the full article below:

Read the article