For most people, identifying objects surrounding them is an easy task.

Let’s say you’re in your office. You can probably casually list objects like desks, computers, filing cabinets, printers, and so on. While this action seems simple on the surface, human vision is actually quite complex.

So, it’s not surprising that computer vision – a relatively new branch of technology aiming to replicate human vision – is equally, if not more, complex.

But before we dive into these complexities, let’s understand the basics – what is computer vision?

Computer vision is an artificial intelligence (AI) field focused on enabling computers to identify and process objects in the visual world. This technology also equips computers to take action and make recommendations based on the visual input they receive.

Simply put, computer vision enables machines to see and understand.

Learning the computer vision definition is just the beginning of understanding this fascinating field. So, let’s explore the ins and outs of computer vision, from fundamental principles to future trends.

History of Computer Vision

While major breakthroughs in computer vision have occurred relatively recently, scientists have been training machines to “see” for over 60 years.

To do the math – the research on computer vision started in the late 1950s.

Interestingly, one of the earliest test subjects wasn’t a computer. Instead, it was a cat! Scientists used a little feline helper to examine how their nerve cells respond to various images. Thanks to this experiment, they concluded that detecting simple shapes is the first stage in image processing.

As AI emerged as an academic field of study in the 1960s, a decade-long quest to help machines mimic human vision officially began.

Since then, there have been several significant milestones in computer vision, AI, and deep learning. Here’s a quick rundown for you:

  • 1970s – Computer vision was used commercially for the first time to help interpret written text for the visually impaired.
  • 1980s – Scientists developed convolutional neural networks (CNNs), a key component in computer vision and image processing.
  • 1990s – Facial recognition tools became highly popular, thanks to a shiny new thing called the internet. For the first time, large sets of images became available online.
  • 2000s – Tagging and annotating visual data sets were standardized.
  • 2010s – Alex Krizhevsky developed a CNN model called AlexNet, drastically reducing the error rate in image recognition (and winning an international image recognition contest in the process).

Today, computer vision algorithms and techniques are rapidly developing and improving. They owe this to an unprecedented amount of visual data and more powerful hardware.

Thanks to these advancements, 99% accuracy has been achieved for computer vision, meaning it’s currently more accurate than human vision at quickly identifying visual inputs.

Fundamentals of Computer Vision

New functionalities are constantly added to the computer vision systems being developed. Still, this doesn’t take away from the same fundamental functions these systems share.

Image Acquisition and Processing

Without visual input, there would be no computer vision. So, let’s start at the beginning.

The image acquisition function first asks the following question: “What imaging device is used to produce the digital image?”

Depending on the device, the resulting data can be a 2D, 3D image, or an image sequence. These images are then processed, allowing the machine to verify whether the visual input contains satisfying data.

Feature Extraction and Representation

The next question then becomes, “What specific features can be extracted from the image?”

By features, we mean measurable pieces of data unique to specific objects in the image.

Feature extraction focuses on extracting lines and edges and localizing interest points like corners and blobs. To successfully extract these features, the machine breaks the initial data set into more manageable chunks.

Object Recognition and Classification

Next, the computer vision system aims to answer: “What objects or object categories are present in the image, and where are they?”

This interpretive technique recognizes and classifies objects based on large amounts of pre-learned objects and object categories.

Image Segmentation and Scene Understanding

Besides observing what is in the image, today’s computer vision systems can act based on those observations.

In image segmentation, computer vision algorithms divide the image into multiple regions and examine the relevant regions separately. This allows them to gain a full understanding of the scene, including the spatial and functional relationships between the present objects.

Motion Analysis and Tracking

Motion analysis studies movements in a sequence of digital images. This technique correlates to motion tracking, which follows the movement of objects of interest. Both techniques are commonly used in manufacturing for monitoring machinery.

Key Techniques and Algorithms in Computer Vision

Computer vision is a fairly complex task. For starters, it needs a huge amount of data. Once the data is all there, the system runs multiple analyses to achieve image recognition.

This might sound simple, but this process isn’t exactly straightforward.

Think of computer vision as a detective solving a crime. What does the detective need to do to identify the criminal? Piece together various clues.

Similarly (albeit with less danger), a computer vision model relies on colors, shapes, and patterns to piece together an object and identify its features.

Let’s discuss the techniques and algorithms this model uses to achieve its end result.

Convolutional Neural Networks (CNNs)

In computer vision, CNNs extract patterns and employ mathematical operations to estimate what image they’re seeing. And that’s all there really is to it. They continue performing the same mathematical operation until they verify the accuracy of their estimate.

Deep Learning and Transfer Learning

The advent of deep learning removed many constraints that prevented computer vision from being widely used. On top of that, (and luckily for computer scientists!), it also eliminated all the tedious manual work.

Essentially, deep learning enables a computer to learn about visual data independently. Computer scientists only need to develop a good algorithm, and the machine will take care of the rest.

Alternatively, computer vision can use a pre-trained model as a starting point. This concept is known as transfer learning.

Edge Detection and Feature Extraction Techniques

Edge detection is one of the most prominent feature extraction techniques.

As the name suggests, it can identify the boundaries of an object and extract its features. As always, the ultimate goal is identifying the object in the picture. To achieve this, edge detection uses an algorithm that identifies differences in pixel brightness (after transforming the data into a grayscale image).

Optical Flow and Motion Estimation

Optical flow is a computer vision technique that determines how each point of an image or video sequence is moving compared to the image plane. This technique can estimate how fast objects are moving.

Motion estimation, on the other hand, predicts the location of objects in subsequent frames of a video sequence.

These techniques are used in object tracking and autonomous navigation.

Image Registration and Stitching

Image registration and stitching are computer vision techniques used to combine multiple images. Image registration is responsible for aligning these images, while image stitching overlaps them to produce a single image. Medical professionals use these techniques to track the progress of a disease.

Applications of Computer Vision

Thanks to many technological advances in the field, computer vision has managed to surpass human vision in several regards. As a result, it’s used in various applications across multiple industries.

Robotics and Automation

Improving robotics was one of the original reasons for developing computer vision. So, it isn’t surprising this technique is used extensively in robotics and automation.

Computer vision can be used to:

  • Control and automate industrial processes
  • Perform automatic inspections in manufacturing applications
  • Identify product and machine defects in real time
  • Operate autonomous vehicles
  • Operate drones (and capture aerial imaging)

Security and Surveillance

Computer vision has numerous applications in video surveillance, including:

  • Facial recognition for identification purposes
  • Anomaly detection for spotting unusual patterns
  • People counting for retail analytics
  • Crowd monitoring for public safety

Healthcare and Medical Imaging

Healthcare is one of the most prominent fields of computer vision applications. Here, this technology is employed to:

  • Establish more accurate disease diagnoses
  • Analyze MRI, CAT, and X-ray scans
  • Enhance medical images interpreted by humans
  • Assist surgeons during surgery

Entertainment and Gaming

Computer vision techniques are highly useful in the entertainment industry, supporting the creation of visual effects and motion capture for animation.

Good news for gamers, too – computer vision aids augmented and virtual reality in creating the ultimate gaming experience.

Retail and E-Commerce

Self-check-out points can significantly enhance the shopping experience. And guess what can help establish them? That’s right – computer vision. But that’s not all. This technology also helps retailers with inventory management, allowing quicker detection of out-of-stock products.

In e-commerce, computer vision facilitates visual search and product recommendation, streamlining the (often frustrating) online purchasing process.

Challenges and Limitations of Computer Vision

There’s no doubt computer vision has experienced some major breakthroughs in recent years. Still, no technology is without flaws.

Here are some of the challenges that computer scientists hope to overcome in the near future:

  • The data for training computer vision models often lack in quantity or quality.
  • There’s a need for more specialists who can train and monitor computer vision models.
  • Computers still struggle to process incomplete, distorted, and previously unseen visual data.
  • Building computer vision systems is still complex, time-consuming, and costly.
  • Many people have privacy and ethical concerns surrounding computer vision, especially for surveillance.

Future Trends and Developments in Computer Vision

As the field of computer vision continues to develop, there should be no shortage of changes and improvements.

These include integration with other AI technologies (such as neuro-symbolic and explainable AI), which will continue to evolve as developing hardware adds new capabilities and capacities that enhance computer vision. Each advancement brings with it the opportunity for other industries (and more complex applications). Construction gives us a good example, as computer vision takes us away from the days of relying on hard hats and signage, moving us toward a future in which computers can actively detect, and alert site foremen too, unsafe behavior.

The Future Looks Bright for Computer Vision

Computer vision is one of the most remarkable concepts in the world of deep learning and artificial intelligence. This field will undoubtedly continue to grow at an impressive speed, both in terms of research and applications.

Are you interested in further research and professional development in this field? If yes, consider seeking out high-quality education in computer vision.

Related posts

Il Sole 24 Ore: Integrating Artificial Intelligence into the Enterprise – Challenges and Opportunities for CEOs and Management
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 14, 2025 6 min read

Source:


Expert Pierluigi Casale analyzes the adoption of AI by companies, the ethical and regulatory challenges and the differentiated approach between large companies and SMEs

By Gianni Rusconi

Easier said than done: to paraphrase the well-known proverb, and to place it in the increasingly large collection of critical issues and opportunities related to artificial intelligence, the task that CEOs and management have to adequately integrate this technology into the company is indeed difficult. Pierluigi Casale, professor at OPIT (Open Institute of Technology, an academic institution founded two years ago and specialized in the field of Computer Science) and technical consultant to the European Parliament for the implementation and regulation of AI, is among those who contributed to the definition of the AI ​​Act, providing advice on aspects of safety and civil liability. His task, in short, is to ensure that the adoption of artificial intelligence (primarily within the parliamentary committees operating in Brussels) is not only efficient, but also ethical and compliant with regulations. And, obviously, his is not an easy task.

The experience gained over the last 15 years in the field of machine learning and the role played in organizations such as Europol and in leading technology companies are the requirements that Casale brings to the table to balance the needs of EU bodies with the pressure exerted by American Big Tech and to preserve an independent approach to the regulation of artificial intelligence. A technology, it is worth remembering, that implies broad and diversified knowledge, ranging from the regulatory/application spectrum to geopolitical issues, from computational limitations (common to European companies and public institutions) to the challenges related to training large-format language models.

CEOs and AI

When we specifically asked how CEOs and C-suites are “digesting” AI in terms of ethics, safety and responsibility, Casale did not shy away, framing the topic based on his own professional career. “I have noticed two trends in particular: the first concerns companies that started using artificial intelligence before the AI ​​Act and that today have the need, as well as the obligation, to adapt to the new ethical framework to be compliant and avoid sanctions; the second concerns companies, like the Italian ones, that are only now approaching this topic, often in terms of experimental and incomplete projects (the expression used literally is “proof of concept”, ed.) and without these having produced value. In this case, the ethical and regulatory component is integrated into the adoption process.”

In general, according to Casale, there is still a lot to do even from a purely regulatory perspective, due to the fact that there is not a total coherence of vision among the different countries and there is not the same speed in implementing the indications. Spain, in this regard, is setting an example, having established (with a royal decree of 8 November 2023) a dedicated “sandbox”, i.e. a regulatory experimentation space for artificial intelligence through the creation of a controlled test environment in the development and pre-marketing phase of some artificial intelligence systems, in order to verify compliance with the requirements and obligations set out in the AI ​​Act and to guide companies towards a path of regulated adoption of the technology.

Read the full article below (in Italian):

Read the article
The Lucky Future: How AI Aims to Change Everything
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Apr 10, 2025 7 min read

There is no question that the spread of artificial intelligence (AI) is having a profound impact on nearly every aspect of our lives.

But is an AI-powered future one to be feared, or does AI offer the promise of a “lucky future.”

That “lucky future” prediction comes from Zorina Alliata, principal AI Strategist at Amazon and AI faculty member at Georgetown University and the Open Institute of Technology (OPIT), in her recent webinar “The Lucky Future: How AI Aims to Change Everything” (February 18, 2025).

However, according to Alliata, such a future depends on how the technology develops and whether strategies can be implemented to mitigate the risks.

How AI Aims to Change Everything

For many people, AI is already changing the way they work. However, more broadly, AI has profoundly impacted how we consume information.

From the curation of a social media feed and the summary answer to a search query from Gemini at the top of your Google results page to the AI-powered chatbot that resolves your customer service issues, AI has quickly and quietly infiltrated nearly every aspect of our lives in the past few years.

While there have been significant concerns recently about the possibly negative impact of AI, Alliata’s “lucky future” prediction takes these fears into account. As she detailed in her webinar, a future with AI will have to take into consideration:

  • Where we are currently with AI and future trajectories
  • The impact AI is having on the job landscape
  • Sustainability concerns and ethical dilemmas
  • The fundamental risks associated with current AI technology

According to Alliata, by addressing these risks, we can craft a future in which AI helps individuals better align their needs with potential opportunities and limitations of the new technology.

Industry Applications of AI

While AI has been in development for decades, Alliata describes a period known as the “AI winter” during which educators like herself studied AI technology, but hadn’t arrived at a point of practical applications. Contributing to this period of uncertainty were concerns over how to make AI profitable as well.

That all changed about 10-15 years ago when machine learning (ML) improved significantly. This development led to a surge in the creation of business applications for AI. Beginning with automation and robotics for repetitive tasks, the technology progressed to data analysis – taking a deep dive into data and finding not only new information but new opportunities as well.

This further developed into generative AI capable of completing creative tasks. Generative AI now produces around one billion words per day, compared to the one trillion produced by humans.

We are now at the stage where AI can complete complex tasks involving multiple steps. In her webinar, Alliata gave the example of a team creating storyboards and user pathways for a new app they wanted to develop. Using photos and rough images, they were able to use AI to generate the code for the app, saving hundreds of hours of manpower.

The next step in AI evolution is Artificial General Intelligence (AGI), an extremely autonomous level of AI that can replicate or in some cases exceed human intelligence. While the benefits of such technology may readily be obvious to some, the industry itself is divided as to not only whether this form of AI is close at hand or simply unachievable with current tools and technology, but also whether it should be developed at all.

This unpredictability, according to Alliata, represents both the excitement and the concerns about AI.

The AI Revolution and the Job Market

According to Alliata, the job market is the next area where the AI revolution can profoundly impact our lives.

To date, the AI revolution has not resulted in widespread layoffs as initially feared. Instead of making employees redundant, many jobs have evolved to allow them to work alongside AI. In fact, AI has also created new jobs such as AI prompt writer.

However, the prediction is that as AI becomes more sophisticated, it will need less human support, resulting in a greater job churn. Alliata shared statistics from various studies predicting as many as 27% of all jobs being at high risk of becoming redundant from AI and 40% of working hours being impacted by language learning models (LLMs) like Chat GPT.

Furthermore, AI may impact some roles and industries more than others. For example, one study suggests that in high-income countries, 8.5% of jobs held by women were likely to be impacted by potential automation, compared to just 3.9% of jobs held by men.

Is AI Sustainable?

While Alliata shared the many ways in which AI can potentially save businesses time and money, she also highlighted that it is an expensive technology in terms of sustainability.

Conducting AI training and processing puts a heavy strain on central processing units (CPUs), requiring a great deal of energy. According to estimates, Chat GPT 3 alone uses as much electricity per day as 121 U.S. households in an entire year. Gartner predicts that by 2030, AI could consume 3.5% of the world’s electricity.

To reduce the energy requirements, Alliata highlighted potential paths forward in terms of hardware optimization, such as more energy-efficient chips, greater use of renewable energy sources, and algorithm optimization. For example, models that can be applied to a variety of uses based on prompt engineering and parameter-efficient tuning are more energy-efficient than training models from scratch.

Risks of Using Generative AI

While Alliata is clearly an advocate for the benefits of AI, she also highlighted the risks associated with using generative AI, particularly LLMs.

  • Uncertainty – While we rely on AI for answers, we aren’t always sure that the answers provided are accurate.
  • Hallucinations – Technology designed to answer questions can make up facts when it does not know the answer.
  • Copyright – The training of LLMs often uses copyrighted data for training without permission from the creator.
  • Bias – Biased data often trains LLMs, and that bias becomes part of the LLM’s programming and production.
  • Vulnerability – Users can bypass the original functionality of an LLM and use it for a different purpose.
  • Ethical Risks – AI applications pose significant ethical risks, including the creation of deepfakes, the erosion of human creativity, and the aforementioned risks of unemployment.

Mitigating these risks relies on pillars of responsibility for using AI, including value alignment of the application, accountability, transparency, and explainability.

The last one, according to Alliata, is vital on a human level. Imagine you work for a bank using AI to assess loan applications. If a loan is denied, the explanation you give to the customer can’t simply be “Because the AI said so.” There needs to be firm and explainable data behind the reasoning.

OPIT’s Masters in Responsible Artificial Intelligence explores the risks and responsibilities inherent in AI, as well as others.

A Lucky Future

Despite the potential risks, Alliata concludes that AI presents even more opportunities and solutions in the future.

Information overload and decision fatigue are major challenges today. Imagine you want to buy a new car. You have a dozen features you desire, alongside hundreds of options, as well as thousands of websites containing the relevant information. AI can help you cut through the noise and narrow the information down to what you need based on your specific requirements.

Alliata also shared how AI is changing healthcare, allowing patients to understand their health data, make informed choices, and find healthcare professionals who meet their needs.

It is this functionality that can lead to the “lucky future.” Personalized guidance based on an analysis of vast amounts of data means that each person is more likely to make the right decision with the right information at the right time.

Read the article