The Magazine

Data Science & AI

Dive deep into data-driven technologies: Machine Learning, Reinforcement Learning, Data Mining, Big Data, NLP & more. Stay updated.

Zorina Alliata Of Open Institute of Technology On Five Things You Need To Create A Highly Successful Career In The AI Industry
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
September 19, 2024

Source:


Gaining hands-on experience through projects, internships, and collaborations is vital for understanding how to apply AI in various industries and domains. Use Kaggle or get a free cloud account and start experimenting. You will have projects to discuss at your next interviews.

By David Leichner, CMO at Cybellum

14 min read

Artificial Intelligence is now the leading edge of technology, driving unprecedented advancements across sectors. From healthcare to finance, education to environment, the AI industry is witnessing a skyrocketing demand for professionals. However, the path to creating a successful career in AI is multifaceted and constantly evolving. What does it take and what does one need in order to create a highly successful career in AI?

In this interview series, we are talking to successful AI professionals, AI founders, AI CEOs, educators in the field, AI researchers, HR managers in tech companies, and anyone who holds authority in the realm of Artificial Intelligence to inspire and guide those who are eager to embark on this exciting career path.

As part of this series, we had the pleasure of interviewing Zorina Alliata.

Zorina Alliata is an expert in AI, with over 20 years of experience in tech, and over 10 years in AI itself. As an educator, Zorina Alliata is passionate about learning, access to education and about creating the career you want. She implores us to learn more about ethics in AI, and not to fear AI, but to embrace it.

Thank you so much for joining us in this interview series! Before we dive in, our readers would like to learn a bit about your origin story. Can you share with us a bit about your childhood and how you grew up?

I was born in Romania, and grew up during communism, a very dark period in our history. I was a curious child and my parents, both teachers, encouraged me to learn new things all the time. Unfortunately, in communism, there was not a lot to do for a kid who wanted to learn: there was no TV, very few books and only ones that were approved by the state, and generally very few activities outside of school. Being an “intellectual” was a bad thing in the eyes of the government. They preferred people who did not read or think too much. I found great relief in writing, I have been writing stories and poetry since I was about ten years old. I was published with my first poem at 16 years old, in a national literature magazine.

Can you share with us the ‘backstory’ of how you decided to pursue a career path in AI?

I studied Computer Science at university. By then, communism had fallen and we actually had received brand new PCs at the university, and learned several programming languages. The last year, the fifth year of study, was equivalent with a Master’s degree, and was spent preparing your thesis. That’s when I learned about neural networks. We had a tiny, 5-node neural network and we spent the year trying to teach it to recognize the written letter “A”.

We had only a few computers in the lab running Windows NT, so really the technology was not there for such an ambitious project. We did not achieve a lot that year, but I was fascinated by the idea of a neural network learning by itself, without any programming. When I graduated, there were no jobs in AI at all, it was what we now call “the AI winter”. So I went and worked as a programmer, then moved into management and project management. You can imagine my happiness when, about ten years ago, AI came back to life in the form of Machine Learning (ML).

I immediately went and took every class possible to learn about it. I spent that Christmas holiday coding. The paradigm had changed from when I was in college, when we were trying to replicate the entire human brain. ML was focused on solving one specific problem, optimizing one specific output, and that’s where businesses everywhere saw a benefit. I then joined a Data Science team at GEICO, moved to Capital One as a Delivery lead for their Center for Machine Learning, and then went to Amazon in their AI/ML team.

Can you tell our readers about the most interesting projects you are working on now?

While I can’t discuss work projects due to confidentiality, there are some things I can mention! In the last five years, I worked with global companies to establish an AI strategy and to introduce AI and ML in their organizations. Some of my customers included large farming associations, who used ML to predict when to plant their crops for optimal results; water management companies who used ML for predictive maintenance to maintain their underground pipes; construction companies that used AI for visual inspections of their buildings, and to identify any possible defects and hospitals who used Digital Twins technology to improve patient outcomes and health. It is amazing to see how much AI and ML are already part of our everyday lives, and to recognize some of it in the mundane around us.

None of us are able to achieve success without some help along the way. Is there a particular person who you are grateful for who helped get you to where you are? Can you share a story about that?

When you are young, there are so many people who step up and help you along the way. I have had great luck with several professors who have encouraged me in school, and an uncle who worked in computers who would take me to his office and let me play around with his machines. I now try to give back and mentor several young people, especially women who are trying to get into the field. I volunteer with AnitaB and Zonta, as well as taking on mentees where I work.

As with any career path, the AI industry comes with its own set of challenges. Could you elaborate on some of the significant challenges you faced in your AI career and how you managed to overcome them?

I think one major challenge in AI is the speed of change. I remember after spending my Christmas holiday learning and coding in R, when I joined the Data Science team at GEICO, I realized the world had moved on and everyone was now coding in Python. So, I had to learn Python very fast, in order to understand what was going on.

It’s the same with research — I try to work on one subject, and four new papers are published every week that move the goal posts. It is very challenging to keep up, but you just have to adapt to continuously learn and let go of what becomes obsolete.

Ok, let’s now move to the main part of our interview about AI. What are the 3 things that most excite you about the AI industry now? Why?

1. Creativity

Generative AI brought us the ability to create amazing images based on simple text descriptions. Entire videos are now possible, and soon, maybe entire movies. I have been working in AI for several years and I never thought creative jobs will be the first to be achieved by AI. I am amazed at the capacity of an algorithms to create images, and to observe the artificial creativity we now see for the first time.

2. Abstraction

I think with the success and immediate mainstream adoption of Generative AI, we saw the great appetite out there for automation and abstraction. No one wants to do boring work and summarizing documents; no one wants to read long websites, they just want the gist of it. If I drive a car, I don’t need to know how the engine works and every equation that the engineers used to build it — I just want my car to drive. The same level of abstraction is now expected in AI. There is a lot of opportunity here in creating these abstractions for the future.

3. Opportunity

I like that we are in the beginning of AI, so there is a lot of opportunity to jump in. Most people who are passionate about it can learn all about AI fully online, in places like Open Institute of Technology. Or they can get experience working on small projects, and then they can apply for jobs. It is great because it gives people access to good jobs and stability in the future.

What are the 3 things that concern you about the AI industry? Why? What should be done to address and alleviate those concerns?

1. Fairness

The large companies that build LLMs spend a lot of energy and money into making them fair. But it is not easy. Us, as humans, are often not fair ourselves. We even have problems agreeing what fairness even means. So, how can we teach the machines to be fair? I think the responsibility stays with us. We can’t simply say “AI did this bad thing.”

2. Regulation

There are some regulations popping up but most are not coordinated or discussed widely. There is controversy, such as regarding the new California bill SB1047, where scientists take different sides of the debate. We need to find better ways to regulate the use and creation of AI, working together as a society, not just in small groups of politicians.

3. Awareness

I wish everyone understood the basics of AI. There is denial, fear, hatred that is created by doomsday misinformation. I wish AI was taught from a young age, through appropriate means, so everyone gets the fundamental principles and understands how to use this great tool in their lives.

For a young person who would like to eventually make a career in AI, which skills and subjects do they need to learn?

I think maybe the right question is: what are you passionate about? Do that, and see how you can use AI to make your job better and more exciting! I think AI will work alongside people in most jobs, as it develops and matures.

But for those who are looking to work in AI, they can choose from a variety of roles as well. We have technical roles like data scientist or machine learning engineer, which require very specialized knowledge and degrees. They learn computing, software engineering, programming, data analysis, data engineering. There are also business roles, for people who understand the technology well but are not writing code. Instead, they define strategies, design solutions for companies, or write implementation plans for AI products and services. There is also a robust AI research domain, where lots of scientists are measuring and analyzing new technology developments.

With Generative AI, new roles appeared, such as Prompt Engineer. We can now talk with the machines in natural language, so speaking good English is all that’s required to find the right conversation.

With these many possible roles, I think if you work in AI, some basic subjects where you can start are:

  1. Analytics — understand data and how it is stored and governed, and how we get insights from it.
  2. Logic — understand both mathematical and philosophical logic.
  3. Fundamentals of AI — read about the history and philosophy of AI, models of thinking, and major developments.

As you know, there are not that many women in the AI industry. Can you advise what is needed to engage more women in the AI industry?

Engaging more women in the AI industry is absolutely crucial if you want to build any successful AI products. In my twenty years career, I have seen changes in the tech industry to address this gender discrepancy. For example, we do well in school with STEM programs and similar efforts that encourage girls to code. We also created mentorship organizations such as AnitaB.org who allow women to connect and collaborate. One place where I think we still lag behind is in the workplace. When I came to the US in my twenties, I was the only woman programmer in my team. Now, I see more women at work, but still not enough. We say we create inclusive work environments, but we still have a long way to go to encourage more women to stay in tech. Policies that support flexible hours and parental leave are necessary, and other adjustments that account for the different lives that women have compared to men. Bias training and challenging stereotypes are also necessary, and many times these are implemented shoddily in organizations.

Ethical AI development is a pressing concern in the industry. How do you approach the ethical implications of AI, and what steps do you believe individuals and organizations should take to ensure responsible and fair AI practices?

Machine Learning and AI learn from data. Unfortunately, lot of our historical data shows strong biases. For example, for a long time, it was perfectly legal to only offer mortgages to white people. The data shows that. If we use this data to train a new model to enhance the mortgage application process, then the model will learn that mortgages should only be offered to white men. That is a bias that we had in the past, but we do not want to learn and amplify in the future.

Generative AI has introduced a new set of fresh risks, the most famous being the “hallucinations.” Generative AI will create new content based on chunks of text it finds in its training data, without an understanding of what the content means. It could repeat something it learned from one Reddit user ten years ago, that could be factually incorrect. Is that piece of information unbiased and fair?

There are many ways we fight for fairness in AI. There are technical tools we can use to offer interpretability and explainability of the actual models used. There are business constraints we can create, such as guardrails or knowledge bases, where we can lead the AI towards ethical answers. We also advise anyone who build AI to use a diverse team of builders. If you look around the table and you see the same type of guys who went to the schools, you will get exactly one original idea from them. If you add different genders, different ages, different tenures, different backgrounds, then you will get ten innovative ideas for your product, and you will have addressed biases you’ve never even thought of.

Read the full article below:

Read the article
The AI ​​Era Requires a More Flexible and Affordable Model for Higher Education
Francesco Profumo
Francesco Profumo
August 01, 2023

AI, and its integration with society, had an incredible acceleration in recent months. By now, it seems certain that AI will be the fourth GPT (General Purpose Technology) of human history: one of those few technologies or inventions that radically and indelibly change society. The last of these technologies was ICT (internet, semiconductor industry, telecommunications); before this, electricity and the steam engine were the first 2 GPTs.


All three GPTs had a huge impact on the overall productivity and advancement of our society with, of course, a profound impact on the world of work. Such an impact, though, was very different across these technologies. The advent of electricity and the steam motor allowed the displacement of large masses of workers from more archaic and manual jobs to their equivalent jobs in the new industrial era, where not many skills were required. The advent of ICT, on the other hand, has generated enormous job opportunities, but also the need to develop meaningful skills to pursue them.


As a result, an increasingly large share of the economic benefit deriving from the advent of ICT has gradually been polarized towards people who had (and have) these skills in society. Suffice it to say that, already in 2017, the richest 1% of America owned twice the wealth of the “poorest” 90%.


It is difficult to make predictions about how the advent of AI will impact this trend already underway. But there are some very clear elements: one of these is that quality education in technology (and not only) will increasingly play a primary role in being able to secure the best career opportunities for a successful future in this new era.


To play a “lead actor” role in this change, though, the world of education – and in particular that of undergraduate and postgraduate education – requires a huge change towards being much more flexible, aligned to today’s needs of students and companies, and affordable.



Let’s take a step back: we grew up thinking that “learning” meant following a set path. Enroll in elementary school, attend middle and high school, and, for the luckiest or most ambitious, conclude by taking a degree.


This model needs to be seriously challenged and adapted to the times: solid foundational learning remains an essential prerogative. But in a “fast” world in rapid change like today’s, knowledge acquired along this “linear” path will not be able to accompany people in their professions until the end of their careers. The “utility period” of the knowledge we acquire today reduces every day, and this emphasizes how essential continuous learning is throughout our lives.


The transition must therefore be towards a more circular pattern for learning. A model in which one returns “to the school desk” several times in life, in order to update oneself, and forget “obsolete” knowledge, making room for new production models, new ways of thinking, organizing, and new technologies.


In this context, Education providers must rethink the way they operate and how they intend to address this need for lifelong learning.


Higher Education Institutions, as accredited bodies and guarantors of the quality of education (OPIT – Open Institute of Technology among these), have the honor of playing a primary role in this transition.


But also the great burden of rethinking their model from scratch which, in a digital age, cannot be a pure and simple digital transposition of the old analog learning model.


The Institutions Universities are called upon to review and keep updated their own study programmes, think of new, more flexible and faster ways of offering them to a wider public, forge greater connections with companies, and ultimately provide them with students who are immediately ready to successfully enter the dynamics of production. And, of course, be more affordable and accessible: quality education in the AI era cannot cost tens of thousands of dollars, and needs to be accessed from wherever the students are.


With OPIT – Open Institute of Technology, this is the path we have taken, taking advantage of the great privilege of being able to start a new path, without preconceptions or “attachment” to the past. We envision a model of a new, digital-first, higher education institution capable of addressing all the points above, and accompany students and professionals throughout their lifetime learning journey.


We are at the beginning, and we hope that the modern and fresh approach we are following can be an interesting starting point for other universities as well.




Authors


Prof. Francesco Profumo, Rector of OPIT – Open Institute of Technology
Former Minister of Education, University and Research of Italy, Academician and author, former President of the National Research Council of Italy, and former Rector of Politecnico di Torino. He is an honorary member of various scientific associations.


Riccardo Ocleppo, Managing Director of OPIT
Founder of OPIT, Founder of Docsity.com, one of the biggest online communities for students with 19+ registered users. MSc in Management at London Business School, MSc in Electronics Engineering at Politecnico di Torino

Prof. Lorenzo Livi, Programme Head at OPIT
Former Associate Professor of Machine Learning at the University of Manitoba, Honorary Senior Lecturer at the University of Exeter, Ph.D. in Computer Science at Università La Sapienza.


		
								
Read the article
Reinforcement Learning: AI Algorithms, Types & Examples
Raj Dasgupta
Raj Dasgupta
July 02, 2023

Reinforcement learning is a very useful (and currently popular) subtype of machine learning and artificial intelligence. It is based on the principle that agents, when placed in an interactive environment, can learn from their actions via rewards associated with the actions, and improve the time to achieve their goal.

In this article, we’ll explore the fundamental concepts of reinforcement learning and discuss its key components, types, and applications.

Definition of Reinforcement Learning

We can define reinforcement learning as a machine learning technique involving an agent who needs to decide which actions it needs to do to perform a task that has been assigned to it most effectively. For this, rewards are assigned to the different actions that the agent can take at different situations or states of the environment. Initially, the agent has no idea about the best or correct actions. Using reinforcement learning, it explores its action choices via trial and error and figures out the best set of actions for completing its assigned task.

The basic idea behind a reinforcement learning agent is to learn from experience. Just like humans learn lessons from their past successes and mistakes, reinforcement learning agents do the same – when they do something “good” they get a reward, but, if they do something “bad”, they get penalized. The reward reinforces the good actions while the penalty avoids the bad ones.

Reinforcement learning requires several key components:

  • Agent – This is the “who” or the subject of the process, which performs different actions to perform a task that has been assigned to it.
  • Environment – This is the “where” or a situation in which the agent is placed.
  • Actions – This is the “what” or the steps an agent needs to take to reach the goal.
  • Rewards – This is the feedback an agent receives after performing an action.

Before we dig deep into the technicalities, let’s warm up with a real-life example. Reinforcement isn’t new, and we’ve used it for different purposes for centuries. One of the most basic examples is dog training.

Let’s say you’re in a park, trying to teach your dog to fetch a ball. In this case, the dog is the agent, and the park is the environment. Once you throw the ball, the dog will run to catch it, and that’s the action part. When he brings the ball back to you and releases it, he’ll get a reward (a treat). Since he got a reward, the dog will understand that his actions were appropriate and will repeat them in the future. If the dog doesn’t bring the ball back, he may get some “punishment” – you may ignore him or say “No!” After a few attempts (or more than a few, depending on how stubborn your dog is), the dog will fetch the ball with ease.

We can say that the reinforcement learning process has three steps:

  1. Interaction
  2. Learning
  3. Decision-making

Types of Reinforcement Learning

There are two types of reinforcement learning: model-based and model-free.

Model-Based Reinforcement Learning

With model-based reinforcement learning (RL), there’s a model that an agent uses to create additional experiences. Think of this model as a mental image that the agent can analyze to assess whether particular strategies could work.

Some of the advantages of this RL type are:

  • It doesn’t need a lot of samples.
  • It can save time.
  • It offers a safe environment for testing and exploration.

The potential drawbacks are:

  • Its performance relies on the model. If the model isn’t good, the performance won’t be good either.
  • It’s quite complex.

Model-Free Reinforcement Learning

In this case, an agent doesn’t rely on a model. Instead, the basis for its actions lies in direct interactions with the environment. An agent tries different scenarios and tests whether they’re successful. If yes, the agent will keep repeating them. If not, it will try another scenario until it finds the right one.

What are the advantages of model-free reinforcement learning?

  • It doesn’t depend on a model’s accuracy.
  • It’s not as computationally complex as model-based RL.
  • It’s often better for real-life situations.

Some of the drawbacks are:

  • It requires more exploration, so it can be more time-consuming.
  • It can be dangerous because it relies on real-life interactions.

Model-Based vs. Model-Free Reinforcement Learning: Example

Understanding model-based and model-free RL can be challenging because they often seem too complex and abstract. We’ll try to make the concepts easier to understand through a real-life example.

Let’s say you have two soccer teams that have never played each other before. Therefore, neither of the teams knows what to expect. At the beginning of the match, Team A tries different strategies to see whether they can score a goal. When they find a strategy that works, they’ll keep using it to score more goals. This is model-free reinforcement learning.

On the other hand, Team B came prepared. They spent hours investigating strategies and examining the opponent. The players came up with tactics based on their interpretation of how Team A will play. This is model-based reinforcement learning.

Who will be more successful? There’s no way to tell. Team B may be more successful in the beginning because they have previous knowledge. But Team A can catch up quickly, especially if they use the right tactics from the start.

Reinforcement Learning Algorithms

A reinforcement learning algorithm specifies how an agent learns suitable actions from the rewards. RL algorithms are divided into two categories: value-based and policy gradient-based.

Value-Based Algorithms

Value-based algorithms learn the value at each state of the environment, where the value of a state is given by the expected rewards to complete the task while starting from that state.

Q-Learning

This model-free, off-policy RL algorithm focuses on providing guidelines to the agent on what actions to take and under what circumstances to win the reward. The algorithm uses Q-tables in which it calculates the potential rewards for different state-action pairs in the environment. The table contains Q-values that get updated after each action during the agent’s training. During execution, the agent goes back to this table to see which actions have the best value.

Deep Q-Networks (DQN)

Deep Q-networks, or deep q-learning, operate similarly to q-learning. The main difference is that the algorithm in this case is based on neural networks.

SARSA

The acronym stands for state-action-reward-state-action. SARSA is an on-policy RL algorithm that uses the current action from the current policy to learn the value.

Policy-Based Algorithms

These algorithms directly update the policy to maximize the reward. There are different policy gradient-based algorithms: REINFORCE, proximal policy optimization, trust region policy optimization, actor-critic algorithms, advantage actor-critic, deep deterministic policy gradient (DDPG), and twin-delayed DDPG.

Examples of Reinforcement Learning Applications

The advantages of reinforcement learning have been recognized in many spheres. Here are several concrete applications of RL.

Robotics and Automation

With RL, robotic arms can be trained to perform human-like tasks. Robotic arms can give you a hand in warehouse management, packaging, quality testing, defect inspection, and many other aspects.

Another notable role of RL lies in automation, and self-driving cars are an excellent example. They’re introduced to different situations through which they learn how to behave in specific circumstances and offer better performance.

Gaming and Entertainment

Gaming and entertainment industries certainly benefit from RL in many ways. From AlphaGo (the first program that has beaten a human in the board game Go) to video games AI, RL offers limitless possibilities.

Finance and Trading

RL can optimize and improve trading strategies, help with portfolio management, minimize risks that come with running a business, and maximize profit.

Healthcare and Medicine

RL can help healthcare workers customize the best treatment plan for their patients, focusing on personalization. It can also play a major role in drug discovery and testing, allowing the entire sector to get one step closer to curing patients quickly and efficiently.

Basics for Implementing Reinforcement Learning

The success of reinforcement learning in a specific area depends on many factors.

First, you need to analyze a specific situation and see which RL algorithm suits it. Your job doesn’t end there; now you need to define the environment and the agent and figure out the right reward system. Without them, RL doesn’t exist. Next, allow the agent to put its detective cap on and explore new features, but ensure it uses the existing knowledge adequately (strike the right balance between exploration and exploitation). Since RL changes rapidly, you want to keep your model updated. Examine it every now and then to see what you can tweak to keep your model in top shape.

Explore the World of Possibilities With Reinforcement Learning

Reinforcement learning goes hand-in-hand with the development and modernization of many industries. We’ve been witnesses to the incredible things RL can achieve when used correctly, and the future looks even better. Hop in on the RL train and immerse yourself in this fascinating world.

Read the article
A Deeper Understanding of Artificial Intelligence: Examples and Applications
Santhosh Suresh
Santhosh Suresh
July 02, 2023

The artificial intelligence market was estimated to be worth $136 billion in 2022, with projections of up to $1,800 billion by the end of the decade. More than a third of companies today implement AI in their business processes, and over 40% will consider doing so in the future.

These whopping numbers testify to the importance, prevalence, and reality of AI in the modern world. If you’re considering an education in AI, you’re looking at a highly rewarding and prosperous future career. But what are the applications of artificial intelligence, and how did it all begin? Let’s start from scratch.

What Is Artificial Intelligence?

Artificial intelligence definition describes AI as a part of computer science that focuses on building programs and software with human intelligence. There are four types of artificial intelligence: the theory of mind, reactive, self-aware, and limited memory.

Reactive AI masters one field, like playing chess, performing a single manufacturing task, and similar. Limited memory machines can gather and remember information and use findings to offer recommendations (hotels, restaurants, etc.).

Theory of mind is a more developed type of AI capable of understanding human emotions. These machines can also take part in social interactions. Finally, self-aware AI is a conscious machine, but its development is reserved for the future.

History of Artificial Intelligence

The concept of artificial intelligence has roots in the 1950s. This was when AI became an academic discipline, and scientists started publishing papers about it. It all started with Alan Turing and his paper about computer machinery and intelligence that introduced basic AI concepts.

Here are some important milestones in the artificial intelligence field:

  • 1952 – Arthur Samuel created a program that taught itself to play checkers.
  • 1955 – John McCarthy’s workshop on AI, where the term was used for the first time.
  • 1961 – First robot worker on a General Motors factory’s assembly line.
  • 1980 – First conference on AI.
  • 1986 – Demonstration of the first driverless car.
  • 1997 – A program beat Gary Kasparov in a legendary chess match, thus becoming the first AI tool to win in a competition over a human.
  • 2000 – Development of a robot that simulates a person’s body movement and human emotions.

AI in the 21st Century

The 21st century has witnessed some of the fastest advancements and applications of artificial intelligence across industries. Robots are becoming more sophisticated, they land on other planets, work in shops, clean, and much more. Global corporations like Facebook, Twitter, Netflix, and others regularly use AI tools in marketing to boost user experience, etc.

We’re also seeing the rise of AI chatbots like ChatGPT that can create content indistinguishable from human content.

Fields Used in Artificial Intelligence

Artificial intelligence relies on the use of numerous technologies:

  • Machine Learning – Making apps and processes that can perform tasks like humans.
  • Natural Language Processing – Training computers to understand words like humans.
  • Computer Vision – Developing tools and programs that can read visual data and take information from it.
  • Robotics – Programming agents to perform tasks in the physical world.

Applications of Artificial Intelligence

Below is an overview of applications of artificial intelligence across industries.

Automation

Any business and sector that relies on automation can use AI tools for faster data processing. By implementing advanced artificial intelligence tools into daily processes, you can save time and resources.

Healthcare

Fraud is common in healthcare. AI in this field is mostly oriented toward lowering the risk of fraud and administrative fees. For example, using AI makes it possible to check insurance claims and find inconsistencies.

Similarly, AI can help advance and finetune medical research, telemedicine, medical training, patient engagement, and support. There’s virtually no aspect of healthcare and medicine that couldn’t benefit from AI.

Business

Businesses across industries benefit from AI to finetune various aspects like the hiring process, threat detection, analytics, task automation, and more. Business owners and managers can make better-informed business decisions with less risk of error.

Education

Modern-day education offers personalized programs tailored to the individual learner’s abilities and goals. By automating tasks with AI tools, teachers can spend more time helping students progress faster in their studies.

Security

Security has never been more important following the rise of web applications, online shopping, and data sharing. With so much sensitive information shared daily, AI can help increase data protection and mitigate hacking attacks and threats. Systems with AI features can diagnose, scan, and detect threats.

Benefits and Challenges of Artificial Intelligence

There are enormous benefits of AI applications that can revolutionize any industry. Here are just some of them:

Automation and Increased Efficiency

AI helps streamline repetitive tasks, automate processes, and boost work efficiency. This characteristic of AI is already visible in all industries, and the use of programming languages like R and Python makes it all possible.

Improved Decision Making

Stakeholders can use AI to analyze immense amounts of data (with millions or billions of pieces of information) and make better-informed business decisions. Compare this to limited data analysis of the past, where researchers only had access to local documents or libraries, and you can understand how AI empowers present-day business owners.

Cost Savings

By automating tasks and streamlining processes, businesses also spend less money. Savings in terms of energy, extra work hour costs, materials, and even HR are significant. When you use AI right, you can turn almost any project into reality with minimal cost.

Challenges of AI

Despite the numerous benefits, AI also comes with a few challenges:

Data Privacy and Security

All AI developments take place online. The web still lacks proper laws on data protection and privacy, and it’s highly possible that user data is being used without consent in AI projects worldwide. Until strict laws are enacted, AI will continue to pose a threat to data privacy.

Algorithmic Bias

Algorithms today assist humans in decision-making. Stakeholders and regular users rely on data provided by AI tools to complete or approach tasks and even form new beliefs and behaviors. Poorly trained machines can encourage human biases, which can be especially harmful.

Job Less

AI is developing at the speed of light. Many tools are already replacing human labor in both the physical and digital worlds. A question remains to what degree machines will overtake the labor market in the future.

Artificial Intelligence Examples

Let’s look at real-world examples of artificial intelligence across applications and industries.

Virtual Assistants

Apple was the first company to introduce a virtual assistant based on AI. We know the tool today by the name of Siri. Numerous other companies like Amazon and Google have followed suit, so now we have Alexa, Google Assistant, and many other AI talking assistants.

Recommendation Systems

Users today find it ever more challenging to resist addictive content online. We’re often glued to our phones because our Instagram feed keeps suggesting must-watch Reels. The same goes for Netflix and its binge-worthy shows. These platforms use AI to enhance their recommendation system and offer ads, TV shows, or videos you love.

Shopping on Amazon works in a similar fashion. Even Spotify uses AI to offer audio recommendations to customers. It relies on your previous search history, liked content, and similar data to provide new suggestions.

Autonomous Vehicles

New-age vehicles powered by AI have sophisticated systems that make commuting easier than ever. Tesla’s latest AI software can collect information in real-time from the multiple cameras on the vehicles. The AI makes a 3D map with roads, obstacles, traffic lights, and other elements to make your ride safer.

Waymo has a similar system of lidar sensors around the vehicles that send pulsations around the car and offer an overview of the car’s surroundings.

Fraud Detection

Banks and credit card companies implement AI algorithms to prevent fraud. Advanced software helps these companies understand their customers and prevent non-authorized users from making payments or completing other unauthorized actions.

Image and Voice Recognition

If you have a newer smartphone, you’re already familiar with Face ID and voice assistant tools. These are built on basic AI principles and are being integrated into broader systems like vehicles, vending machines, home appliances, and more.

Deep Learning

Artificial intelligence encompasses both deep learning and machine learning. Machine learning encompasses deep learning and uses algorithms that learn from data, explore patterns, and predict outputs.

Deep learning relies on sophisticated neural networks similar to the networks in the human brain. Deep learning specialists use these neural networks to pinpoint patterns in large data sets.

Artificial Intelligence Continues to Grow and Develop

Although predicting the future is impossible, numerous AI specialists expect to see further development in this computer science discipline. More businesses will start implementing AI and we’ll see more autonomous vehicles and smarter robotics. That said, it’s increasingly important to take into account ethical considerations. As long as we use AI ethically, there’s no danger to our social interactions and privacy.

Read the article
Do I Need a Master’s Degree in Data Science?
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
July 01, 2023

The future looks bright for the data science sector, with the U.S. Bureau of Labor Statistics stating that there were 113,300 jobs in the industry in 2021. Growth is also a major plus. The same resource estimates a 36% increase in data scientist roles between 2021 and 2031, which outpaces the national average considerably. Combine that with attractive salaries (Indeed says the average salary for a data scientist is $130,556) and you have an industry that’s ready and waiting for new talent.

That’s where you come in, as you’re exploring the possibilities in data science and need to find the appropriate educational tools to help you enter the field. A Master’s degree may be a good choice, leading to the obvious question – do you need a Master’s for data science?

The Value of a Masters in Data Science

There’s plenty of value to committing the time (and money) to earning your data science Master’s degree:

  • In-depth knowledge and skills – A Master’s degree is a structured course that puts you in front of some of the leading minds in the field. You’ll develop very specific skills (most applying to the working world) and can access huge wellsprings of knowledge in the forms of your professors and their resources.
  • Networking opportunities – Access to professors (and similar professionals) enables you to build connections with people who can give you a leg up when you enter the working world. You’ll also work with other students, with your peers offering as much potential for startup ideas and new roles as your professors.
  • Increased job opportunities – With salaries in the $130,000 range, there’s clearly plenty of potential for a comfortable career pursuing a subject that you love. Having a Master’s degree in data science on your resume demonstrates that you’ve reached a certain skill threshold for employers, making them more likely to hire you.

Having said all of that, the answer to “do I need a Master’s for data science?” is “not necessarily.” There are actually some downsides to going down the formal studying route:

  • The time commitment – Data science programs vary in length, though you can expect to commit at least 12 months of your life to your studies. Most courses require about two years of full-time study, which is a substantial time commitment given that you’ve already earned a degree and have job opportunities waiting.
  • Your financial investment – A Master’s in data science can cost anywhere between about $10,000 for an online course to over $50,000 for courses from more prestigious institutions. For instance, Tufts University’s course requires a total investment of $54,304 if you wish to complete all of your credit hours.
  • Opportunity cost – When opportunity beckons, committing two more years to your studies may lead to you missing out. Say a friend has a great idea for a startup, or you’re offered a role at a prestigious company after completing your undergraduate studies. Saying “no” to those opportunities may come back to bite you if they’re not waiting for you when you complete your Master’s degree.

Alternatives to a Masters in Data Science

If spending time and money on earning a Master’s degree isn’t to your liking, there are some alternative ways to develop data science skills.

Self-Learning and Online Resources

With the web offering a world of information at your fingertips, self-learning is a viable option (assuming you get something to show for it). Options include the following:

  • Online courses and tutorials – The ability to learn at your own pace, rather than being tied into a multi-year degree, is the key benefit of online courses and tutorials. Some prestigious universities (including MIT and Harvard) even offer more bite-sized ways to get into data science. Reputation (both for the course and its providers) can be a problem, though, as some employers prefer candidates with more formal educations.
  • Books and articles – The seemingly old-school method of book learning can take you far when it comes to learning about the ins and outs of data science. While published books help with theory, articles can keep you abreast of the latest developments in the field. Unfortunately, listing a bunch of books and articles that you’ve read on a resume isn’t the same as having a formal qualification.
  • Data science competitions – Several organizations (such as Kaggle) offer data science competitions designed to test your skills. In addition to giving you the opportunity to wield your growing skillset, these competitions come with the dual benefits of prestige and prizes.

Bootcamps and Certificate Programs

Like the previously mentioned competitions, bootcamps offer intensive tests of your data science skills, with the added bonus of a job waiting for you at the end (in some cases). Think of them like cramming for an exam – you do a lot in a short time (often a few months) to get a reward at the end.

The prospect of landing a job after completing a bootcamp is great, but the study methods aren’t for everybody. If you thrive in a slower-paced environment, particularly one that allows you to expand your skillset gradually, an intensive bootcamp may be intimidating and counter to your educational needs.

Gaining Experience Through Internships and Entry-Level Positions

Any recent graduate who’s seen a job listing that asks for a degree and several years of experience can tell you how much employers value hands-on experience. That’s as true in data science as it is in any other field, which is where internships come in. An internship is an unpaid position (often with a prestigious company) that’s ideal for learning the workplace ropes and forming connections with people who can help you advance your career.

If an internship sounds right for you, consider these tips that may make them easier to find:

  • Check the job posting platforms – The likes of Indeed and LinkedIn are great places to find companies (and the people within them) who may offer internships. There are also intern-dedicated websites, such as internships.com, which focus specifically on this type of employment.
  • Meet the basic requirements – Most internships don’t require you to have formal qualifications, such as a Master’s degree, to apply. But by the same token, companies won’t accept you for a data science internship if you have no experience with computers. A solid understanding of major programming and scripting languages, such as Java, SQL, and C++, gives you a major head start. You’ve also got a better chance of landing a role if you enrolled in an undergraduate program (or have completed one) in computer science, math, or a similar field.
  • Check individual business websites – Not all companies run to LinkedIn or job posting sites when they advertise vacant positions. Some put those roles on their own websites, meaning a little more in-depth searching can pay off. Create a list of companies that you believe you’d enjoy working for and check their business websites to see if they’re offering internships via their sites.

Factors to Consider When Deciding if a Masters Is Necessary

You know that the answer to “Do you need a Master’s for data science?” is “no,” but there are downsides to the alternatives. Being able to prove your skills on a resume is a must, which the self-learning route doesn’t always provide, and some alternatives may be too fast-paced for those who want to take their time getting to grips with the subject. When making your choice, the following four factors should play into your decision-making

Personal Goals and Career Aspirations

The opportunity cost factor often comes into play here, as you may find that some entry-level roles for computer science graduates can “teach you as you go” when it comes to data science. Still, you may not want to feel like you’re stuck in a lower role for several years when you could advance faster with a Master’s under your belt. So, consider charting your ideal career course, with the positions that best align with your goals, to figure out if you’ll need a Master’s to get you to where you want to go.

Current Level of Education and Experience

Some of the options for getting into data science aren’t available to those with limited experience. For example, anybody can make their start with books and articles, which have no barrier to entry. But many internships require demonstrable proof that you understand various programming and scripting languages, with some also asking to see evidence of formal education. As for a Master’s degree, you’ll need a BSc in computer science (or an equivalent degree) to walk down that path.

Financial Considerations

Money makes the educational wheel turn, at least when it comes to formal education. As mentioned, a Master’s in data science can set you back up to $50,000, which may sting (and even be unfeasible) if you already have student loans to pay off for an undergraduate degree. Online courses are more cost-effective (and offer certification), while bootcamps and competitions can either pay you for learning or set you up in a career if you succeed.

Time Commitment and Flexibility

The simple question here is how long do you want to wait to start your career in data science? The patient person can afford to spend a couple of years earning their Master’s degree, and will benefit from having formal and respectable proof of their skills when they’re done. But if you want to get started right now, internships combined with more flexible online courses may provide a faster route to your goal.

A Master’s Degree – Do You Need It to Master Data Science?

Everybody’s answer is different when they ask themselves “do I need a Master’s in data science?” Some prefer the formalized approach that a Master’s offers, along with the exposure to industry professionals that may set them up for strong careers in the future. Others are less patient, preferring to quickly develop skills in a bootcamp, while yet others want a more free-form educational experience that is malleable to their needs and time constraints.

In the end, your circumstances, career goals, and educational preferences are the main factors when deciding which route to take. A Master’s degree is never a bad thing to have on your resume, but it’s not essential for a career in data science. Explore your options and choose whatever works best for you.

Read the article
Classification in Data Mining: Techniques & Systems Explained
Santhosh Suresh
Santhosh Suresh
July 01, 2023

Data mining is an essential process for many businesses, including McDonald’s and Amazon. It involves analyzing huge chunks of unprocessed information to discover valuable insights. It’s no surprise large organizations rely on data mining, considering it helps them optimize customer service, reduce costs, and streamline their supply chain management.

Although it sounds simple, data mining is comprised of numerous procedures that help professionals extract useful information, one of which is classification. The role of this process is critical, as it allows data specialists to organize information for easier analysis.

This article will explore the importance of classification in greater detail. We’ll explain classification in data mining and the most common techniques.

Classification in Data Mining

Answering your question, “What is classification in data mining?” isn’t easy. To help you gain a better understanding of this term, we’ll cover the definition, purpose, and applications of classification in different industries.

Definition of Classification

Classification is the process of grouping related bits of information in a particular data set. Whether you’re dealing with a small or large set, you can utilize classification to organize the information more easily.

Purpose of Classification in Data Mining

Defining the classification of data mining systems is important, but why exactly do professionals use this method? The reason is simple – classification “declutters” a data set. It makes specific information easier to locate.

In this respect, think of classification as tidying up your bedroom. By organizing your clothes, shoes, electronics, and other items, you don’t have to waste time scouring the entire place to find them. They’re neatly organized and retrievable within seconds.

Applications of Classification in Various Industries

Here are some of the most common applications of data classification to help further demystify this process:

  • Healthcare – Doctors can use data classification for numerous reasons. For example, they can group certain indicators of a disease for improved diagnostics. Likewise, classification comes in handy when grouping patients by age, condition, and other key factors.
  • Finance – Data classification is essential for financial institutions. Banks can group information about consumers to find lenders more easily. Furthermore, data classification is crucial for elevating security.
  • E-commerce – A key feature of online shopping platforms is recommending your next buy. They do so with the help of data classification. A system can analyze your previous decisions and group the related information to enhance recommendations.
  • Weather forecast – Several considerations come into play during a weather forecast, including temperatures and humidity. Specialists can use a data mining platform to classify these considerations.

Techniques for Classification in Data Mining

Even though all data classification has a common goal (making information easily retrievable), there are different ways to accomplish it. In other words, you can incorporate an array of classification techniques in data mining.

Decision Trees

The decision tree method might be the most widely used classification technique. It’s a relatively simple yet effective method.

Overview of Decision Trees

Decision trees are like, well, trees, branching out in different directions. In the case of data mining, these trees have two branches: true and false. This method tells you whether a feature is true or false, allowing you to organize virtually any information.

Advantages and Disadvantages

Advantages:

  • Preparing information in decision trees is simple.
  • No normalization or scaling is involved.
  • It’s easy to explain to non-technical staff.

Disadvantages:

  • Even the tiniest of changes can transform the entire structure.
  • Training decision tree-based models can be time-consuming.
  • It can’t predict continuous values.

Support Vector Machines (SVM)

Another popular classification involves the use of support vector machines.

Overview of SVM

SVMs are algorithms that divide a dataset into two groups. It does so while ensuring there’s maximum distance from the margins of both groups. Once the algorithm categorizes information, it provides a clear boundary between the two groups.

Advantages and Disadvantages

Advantages:

  • It requires minimal space.
  • The process consumes little memory.

Disadvantages:

  • It may not work well in large data sets.
  • If the dataset has more features than training data samples, the algorithm might not be very accurate.

Naïve Bayes Classifier

The Naïve Bayes is also a viable option for classifying information.

Overview of Naïve Bayes Classifier

The Naïve Bayes method is a robust classification solution that makes predictions based on historical information. It tells you the likelihood of an event after analyzing how many times a similar (or the same) event has taken place. The most frequent application of this algorithm is distinguishing non-spam emails from billions of spam messages.

Advantages and Disadvantages

Advantages:

  • It’s a fast, time-saving algorithm.
  • Minimal training data is needed.
  • It’s perfect for problems with multiple classes.

Disadvantages:

  • Smoothing techniques are often required to fix noise.
  • Estimates can be inaccurate.

K-Nearest Neighbors (KNN)

Although algorithms used for classification in data mining are complex, some have a simple premise. KNN is one of those algorithms.

Overview of KNN

Like many other algorithms, KNN starts with training data. From there, it determines the distance between particular objects. Items that are close to each other are considered related, which means that this system uses proximity to classify data.

Advantages and Disadvantages

Advantages:

  • The implementation is simple.
  • You can add new information whenever necessary without affecting the original data.

Disadvantages:

  • The system can be computationally intensive, especially with large data sets.
  • Calculating distances in large data sets is also expensive.

Artificial Neural Networks (ANN)

You might be wondering, “Is there a data classification technique that works like our brain?” Artificial neural networks may be the best example of such methods.

Overview of ANN

ANNs are like your brain. Just like the brain has connected neurons, ANNs have artificial neurons known as nodes that are linked to each other. Classification methods relying on this technique use the nodes to determine the category to which an object belongs.

Advantages and Disadvantages

Advantages:

  • It can be perfect for generalization in natural language processing and image recognition since they can recognize patterns.
  • The system works great for large data sets, as they render large chunks of information rapidly.

Disadvantages:

  • It needs lots of training information and is expensive.
  • The system can potentially identify non-existent patterns, which can make it inaccurate.

Comparison of Classification Techniques

It’s difficult to weigh up data classification techniques because there are significant differences. That’s not to say analyzing these models is like comparing apples to oranges. There are ways to determine which techniques outperform others when classifying particular information:

  • ANNs generally work better than SVMs for making predictions.
  • Decision trees are harder to design than some other, more complex solutions, such as ANNs.
  • KNNs are typically more accurate than Naïve Bayes, which is rife with imprecise estimates.

Systems for Classification in Data Mining

Classifying information manually would be time-consuming. Thankfully, there are robust systems to help automate different classification techniques in data mining.

Overview of Data Mining Systems

Data mining systems are platforms that utilize various methods of classification in data mining to categorize data. These tools are highly convenient, as they speed up the classification process and have a multitude of applications across industries.

Popular Data Mining Systems for Classification

Like any other technology, classification of data mining systems becomes easier if you use top-rated tools:

WEKA

How often do you need to add algorithms from your Java environment to classify a data set? If you do it regularly, you should use a tool specifically designed for this task – WEKA. It’s a collection of algorithms that performs a host of data mining projects. You can apply the algorithms to your own code or directly into the platform.

RapidMiner

If speed is a priority, consider integrating RapidMiner into your environment. It produces highly accurate predictions in double-quick time using deep learning and other advanced techniques in its Java-based architecture.

Orange

Open-source platforms are popular, and it’s easy to see why when you consider Orange. It’s an open-source program with powerful classification and visualization tools.

KNIME

KNIME is another open-source tool you can consider. It can help you classify data by revealing hidden patterns in large amounts of information.

Apache Mahout

Apache Mahout allows you to create algorithms of your own. Each algorithm developed is scalable, enabling you to transfer your classification techniques to higher levels.

Factors to Consider When Choosing a Data Mining System

Choosing a data mining system is like buying a car. You need to ensure the product has particular features to make an informed decision:

  • Data classification techniques
  • Visualization tools
  • Scalability
  • Potential issues
  • Data types

The Future of Classification in Data Mining

No data mining discussion would be complete without looking at future applications.

Emerging Trends in Classification Techniques

Here are the most important data classification facts to keep in mind for the foreseeable future:

  • The amount of data should rise to 175 billion terabytes by 2025.
  • Some governments may lift certain restrictions on data sharing.
  • Data automation is expected to be further automated.

Integration of Classification With Other Data Mining Tasks

Classification is already an essential task. Future platforms may combine it with clustering, regression, sequential patterns, and other techniques to optimize the process. More specifically, experts may use classification to better organize data for subsequent data mining efforts.

The Role of Artificial Intelligence and Machine Learning in Classification

Nearly 20% of analysts predict machine learning and artificial intelligence will spearhead the development of classification strategies. Hence, mastering these two technologies may become essential.

Data Knowledge Declassified

Various methods for data classification in data mining, like decision trees and ANNs, are a must-have in today’s tech-driven world. They help healthcare professionals, banks, and other industry experts organize information more easily and make predictions.

To explore this data mining topic in greater detail, consider taking a course at an accredited institution. You’ll learn the ins and outs of data classification as well as expand your career options.

Read the article
Data Science & AI: The Key Differences vs. Machine Learning
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
July 01, 2023

Machine learning, data science, and artificial intelligence are common terms in modern technology. These terms are often used interchangeably but incorrectly, which is understandable.

After all, hundreds of millions of people use the advantages of digital technologies. Yet only a small percentage of those users are experts in the field.

AI, data science, and machine learning represent valuable assets that can be used to great advantage in various industries. However, to use these tools properly, you need to understand what they are. Furthermore, knowing the difference between data science and machine learning, as well as how AI differs from both, can dispel the common misconceptions about these technologies.

Read on to gain a better understanding of the three crucial tech concepts.

Data Science

Data science can be viewed as the foundation of many modern technological solutions. It’s also the stage from which existing solutions can progress and evolve. Let’s define data science in more detail.

Definition and Explanation of Data Science

A scientific discipline with practical applications, data science represents a field of study dedicated to the development of data systems. If this definition sounds too broad, that’s because data science is a broad field by its nature.

Data structure is the primary concern of data science. To produce clean data and conduct analysis, scientists use a range of methods and tools, from manual to automated solutions.

Data science has another crucial task: defining problems that previously didn’t exist or slipped by unnoticed. Through this activity, data scientists can help predict unforeseen issues, improve existing digital tools, and promote the development of new ones.

Key Components of Data Science

Breaking down data science into key components, we get to three essential factors:

  • Data collection
  • Data analysis
  • Predictive modeling

Data collection is pretty much what it sounds like – gathering of data. This aspect of data science also includes preprocessing, which is essentially preparation of raw data for further processing.

During data analysis, data scientists draw conclusions based on the gathered data. They search the data for patterns and potential flaws. The scientists do this to determine weak points and system deficiencies. In data visualization, scientists aim to communicate the conclusions of their investigation through graphics, charts, bullet points, and maps.

Finally, predictive modeling represents one of the ultimate uses of the analyzed data. Here, create models that can help them predict future trends. This component also illustrates the differentiation between data science vs. machine learning. Machine learning is often used in predictive modeling as a tool within the broader field of data science.

Applications and Use Cases of Data Science

Data science finds uses in marketing, banking, finance, logistics, HR, and trading, to name a few. Financial institutions and businesses take advantage of data science to assess and manage risks. The powerful assistance of data science often helps these organizations gain the upper hand in the market.

In marketing, data science can provide valuable information about customers, help marketing departments organize, and launch effective targeted campaigns. When it comes to human resources, extensive data gathering, and analysis allow HR departments to single out the best available talent and create accurate employee performance projections.

Artificial Intelligence (AI)

The term “artificial intelligence” has been somewhat warped by popular culture. Despite the varying interpretations, AI is a concrete technology with a clear definition and purpose, as well as numerous applications.

Definition and Explanation of AI

Artificial intelligence is sometimes called machine intelligence. In its essence, AI represents a machine simulation of human learning and decision-making processes.

AI gives machines the function of empirical learning, i.e., using experiences and observations to gain new knowledge. However, machines can’t acquire new experiences independently. They need to be fed relevant data for the AI process to work.

Furthermore, AI must be able to self-correct so that it can act as an active participant in improving its abilities.

Obviously, AI represents a rather complex technology. We’ll explain its key components in the following section.

Key Components of AI

A branch of computer science, AI includes several components that are either subsets of one another or work in tandem. These are machine learning, deep learning, natural language processing (NLP), computer vision, and robotics.

It’s no coincidence that machine learning popped up at the top spot here. It’s a crucial aspect of AI that does precisely what the name says: enables machines to learn.

We’ll discuss machine learning in a separate section.

Deep learning relates to machine learning. Its aim is essentially to simulate the human brain. To that end, the technology utilizes neural networks alongside complex algorithm structures that allow the machine to make independent decisions.

Natural language processing (NLP) allows machines to comprehend language similarly to humans. Language processing and understanding are the primary tasks of this AI branch.

Somewhat similar to NLP, computer vision allows machines to process visual input and extract useful data from it. And just as NLP enables a computer to understand language, computer vision facilitates a meaningful interpretation of visual information.

Finally, robotics are AI-controlled machines that can replace humans in dangerous or extremely complex tasks. As a branch of AI, robotics differs from robotic engineering, which focuses on the mechanical aspects of building machines.

Applications and Use Cases of AI

The variety of AI components makes the technology suitable for a wide range of applications. Machine and deep learning are extremely useful in data gathering. NLP has seen a massive uptick in popularity lately, especially with tools like ChatGPT and similar chatbots. And robotics has been around for decades, finding use in various industries and services, in addition to military and space applications.

Machine Learning

Machine learning is an AI branch that’s frequently used in data science. Defining what this aspect of AI does will largely clarify its relationship to data science and artificial intelligence.

Definition and Explanation of Machine Learning

Machine learning utilizes advanced algorithms to detect data patterns and interpret their meaning. The most important facets of machine learning include handling various data types, scalability, and high-level automation.

Like AI in general, machine learning also has a level of complexity to it, consisting of several key components.

Key Components of Machine Learning

The main aspects of machine learning are supervised, unsupervised, and reinforcement learning.

Supervised learning trains algorithms for data classification using labeled datasets. Simply put, the data is first labeled and then fed into the machine.

Unsupervised learning relies on algorithms that can make sense of unlabeled datasets. In other words, external intervention isn’t necessary here – the machine can analyze data patterns on its own.

Finally, reinforcement learning is the level of machine learning where the AI can learn to respond to input in an optimal way. The machine learns correct behavior through observation and environmental interactions without human assistance.

Applications and Use Cases of Machine Learning

As mentioned, machine learning is particularly useful in data science. The technology makes processing large volumes of data much easier while producing more accurate results. Supervised and particularly unsupervised learning are especially helpful here.

Reinforcement learning is most efficient in uncertain or unpredictable environments. It finds use in robotics, autonomous driving, and all situations where it’s impossible to pre-program machines with sufficient accuracy.

Perhaps most famously, reinforcement learning is behind AlphaGo, an AI program developed for the Go board game. The game is notorious for its complexity, having about 250 possible moves on each of 150 turns, which is how long a typical game lasts.

Alpha Go managed to defeat the human Go champion by getting better at the game through numerous previous matches.

Key Differences Between Data Science, AI, and Machine Learning

The differences between machine learning, data science, and artificial intelligence are evident in the scope, objectives, techniques, required skill sets, and application.

As a subset of AI and a frequent tool in data science, machine learning has a more closely defined scope. It’s structured differently to data science and artificial intelligence, both massive fields of study with far-reaching objectives.

The objectives of data science are pto gather and analyze data. Machine learning and AI can take that data and utilize it for problem-solving, decision-making, and to simulate the most complex traits of the human brain.

Machine learning has the ultimate goal of achieving high accuracy in pattern comprehension. On the other hand, the main task of AI in general is to ensure success, particularly in emulating specific facets of human behavior.

All three require specific skill sets. In the case of data science vs. machine learning, the sets don’t match. The former requires knowledge of SQL, ETL, and domains, while the latter calls for Python, math, and data-wrangling expertise.

Naturally, machine learning will have overlapping skill sets with AI, since it’s its subset.

Finally, in the application field, data science produces valuable data-driven insights, AI is largely used in virtual assistants, while machine learning powers search engine algorithms.

How Data Science, AI, and Machine Learning Complement Each Other

Data science helps AI and machine learning by providing accurate, valuable data. Machine learning is critical in processing data and functions as a primary component of AI. And artificial intelligence provides novel solutions on all fronts, allowing for more efficient automation and optimal processes.

Through the interaction of data science, AI, and machine learning, all three branches can develop further, bringing improvement to all related industries.

Understanding the Technology of the Future

Understanding the differences and common uses of data science, AI, and machine learning is essential for professionals in the field. However, it can also be valuable for businesses looking to leverage modern and future technologies.

As all three facets of modern tech develop, it will be important to keep an eye on emerging trends and watch for future developments.

Read the article
The Advantages & Disadvantages of AI: Weighing the Pros & Cons
Sabya Dasgupta
Sabya Dasgupta
July 01, 2023

Artificial intelligence has impacted on businesses since its development in the 1940s. By automating various tasks, it increases security, streamlines inventory management, and provides many other tremendous benefits. Additionally, it’s expected to grow at a rate of nearly 40% until the end of the decade.

However, the influence of artificial intelligence goes both ways. There are certain disadvantages to consider to get a complete picture of this technology.

This article will cover the most important advantages and disadvantages of artificial intelligence.

Advantages of AI

Approximately 37% of all organizations embrace some form of AI to polish their operations. The numerous advantages help business owners take their enterprises to a whole new level.

Increased Efficiency and Productivity

One of the most significant advantages of artificial intelligence is elevated productivity and efficiency.

Automation of Repetitive Tasks

How many times have you thought to yourself: “I really wish there was a better way to take care of this mundane task.” There is – incorporate artificial intelligence into your toolbox.

You can program this technology to perform basically anything. Whether you need to go through piles of documents or adjust print settings, a machine can do the work for you. Just set the parameters, and you can sit back while AI does the rest.

Faster Data Processing and Analysis

You probably deal with huge amounts of information. Manual processing and analysis can be time-consuming, but not if you outsource the project to AI. Artificial intelligence can breeze through vast chunks of data much faster than people.

Improved Decision-Making

AI makes all the difference with decision-making through data-driven insights and the reduction of human error.

Data-Driven Insights

AI software gathers and analyzes data from relevant sources. Decision-makers can use this highly accurate information to make an informed decision and predict future trends.

Reduction of Human Error

Burnout can get the better of anyone and increase the chances of making a mistake. That’s not what happens with AI. If correctly programmed, it can carry out virtually any task, and the chances of error are slim to none.

Enhanced Customer Experience

Artificial intelligence can also boost customer experience.

Personalized Recommendations

AI machines can use data to recommend products and services. The technology reduces the need for manual input to further automate repetitive tasks. One of the most famous platforms with AI-based recommendations is Netflix.

Chatbots and Virtual Assistants

Many enterprises set up AI-powered chatbots and virtual assistants to communicate with customers and help them troubleshoot various issues. Likewise, these platforms can help clients find a certain page or blog on a website.

Innovation and Creativity

Contrary to popular belief, one of the biggest advantages of artificial intelligence is that it can promote innovation and creativity.

AI-Generated Content and Designs

AI can create some of the most mesmerizing designs imaginable. Capable of producing stunning content, whether in the written, video, or audio format, it also works at unprecedented speeds.

Problem-Solving Capabilities

Sophisticated AI tools can solve a myriad of problems, including math, coding, and architecture. Simply describe your problem and wait for the platform to apply its next-level skills.

Cost Savings

According to McKinsey & Company, you can decrease costs by 15%-20% in less than two years by implementing AI in your workplace. Two main factors underpin this reduction.

Reduced Labor Costs

Before AI became widespread, many tasks could only be performed by humans, such as contact management and inventory tracking. Nowadays, artificial intelligence can take on those responsibilities and cut labor costs.

Lower Operational Expenses

As your enterprise becomes more efficient through AI implementation, you reduce errors and lower operational expenses.

Disadvantages of AI

AI does have a few drawbacks. Understanding the disadvantages of artificial intelligence is key to making the right decision on the adoption of this technology.

Job Displacement and Unemployment

The most obvious disadvantage is redundancies. Many people lose their jobs because their position becomes obsolete. Organizations prioritize cost cutting, which is why they often lay off employees in favor of AI.

Automation Replacing Human Labor

This point is directly related to the previous one. Even though AI-based automation is beneficial from a time and money-saving perspective, it’s a major problem for employees. Those who perform repetitive tasks are at risk of losing their position.

Need for Workforce Reskilling

Like any other workplace technology, artificial intelligence requires people to learn additional skills. Since some abilities may become irrelevant due to AI-powered automation, job seekers need to pick up more practical skills that can’t be replaced by AI.

Ethical Concerns

In addition to increasing unemployment, artificial intelligence can also raise several ethical concerns.

Bias and Discrimination in AI Algorithms

AI algorithms are sophisticated, but they’re not perfect. The main reason being that developers inject their personal biases into the AI-based tool. Consequently, content and designs created through AI may contain subjective themes that might not resonate with some audiences.

Privacy and Surveillance Issues

One of the most serious disadvantages of artificial intelligence is that it can infringe on people’s privacy. Some platforms gather information about individuals without their consent. Even though it may achieve a greater purpose, many people aren’t willing to sacrifice their right to privacy.

High Initial Investment and Maintenance Costs

As cutting-edge technology, Artificial Intelligence is also pricey.

Expensive AI Systems and Infrastructure

The cost of developing a custom AI solution can be upwards of $200,000. Hence, it can be a financial burden.

Ongoing Updates and Improvements

Besides the initial investment, you also need to release regular updates and improvements to streamline the AI platform. All of which quickly adds up.

Dependence on Technology

While reliance on technology has its benefits, there are a few disadvantages.

Loss of Human Touch and Empathy

Although advanced, most AI tools fail to capture the magic of the human touch. They can’t empathize with the target audience, either, making the content less impactful.

Overreliance on AI Systems

If you become overly reliant on an AI solution, your problem-solving skills suffer and you might not know how to complete a project if the system fails.

Security Risks

AI tools aren’t impervious to security risks. Far from it – many risks arise when utilizing this technology.

Vulnerability to Cyberattacks

Hackers can tap into the AI network by adding training files the tool considers safe. Before you know it, the malware spreads and wreaks havoc on the infrastructure.

Misuse of AI Technology

Malicious users often have dishonorable intentions with AI software. They can use it to create deep fakes or execute phishing attacks to steal information.

AI in Various Industries: Pros and Cons

Let’s go through the pros and cons of using AI in different industries.

Healthcare

Advantages:

  • Improved Diagnostics – AI can drastically speed up the diagnostics process.
  • Personalized Treatment – Artificial intelligence can provide personalized treatment recommendations.
  • Drug Development – AI algorithms can scan troves of information to help develop drugs.

Disadvantages:

  • Privacy Concerns – Systems can collect patient and doctor data without their permission.
  • High Costs – Implementing an AI system might be too expensive for many hospitals.
  • Potential Misdiagnosis – An AI machine may overlook certain aspects during diagnosis.

Finance

Advantages:

  • Fraud Detection – AI-powered data collection and analysis is perfect for preventing financial fraud.
  • Risk Assessment – Automated reports and monitoring expedite and optimize risk assessment.
  • Algorithmic Trading – A computer can capitalize on specific market conditions automatically to increase profits.

Disadvantages:

  • Job Displacement – Risk assessment professionals and other specialists could become obsolete due to AI.
  • Ethical Concerns – Artificial intelligence may use questionable data collection practices.
  • Security Risks – A cybercriminal can compromise an AI system of a bank, allowing them to steal customer data.

Manufacturing

Advantages:

  • Increased Efficiency – You can set product dimensions, weight, and other parameters automatically with AI.
  • Reduced Waste – Artificial intelligence is more accurate than humans, reducing waste in manufacturing facilities.
  • Improved Safety – Lower manual input leads to fewer workplace accidents.

Disadvantages:

  • Job Displacement – AI implementation results in job loss in most fields. Manufacturing is no exception.
  • High Initial Investment – Production companies typically need $200K+ to develop a tailor-made AI system.
  • Dependence on Technology – AI manufacturing programs may require tweaks after some time, which is hard to do if you become overly reliant on the software.

Education

Advantages:

  • Personalized Learning – An AI program can recommend appropriate textbooks, courses, and other resources.
  • Adaptive Assessments – AI-operated systems adapt to the learner’s needs for greater retention.
  • Virtual Tutors – Schools can reduce labor costs with virtual tutors.

Disadvantages:

  • Privacy Concerns – Data may be at risk in an AI classroom.
  • Digital Divide – Some nations don’t have the same access to technology as others, leading to so-called digital divide.
  • Loss of Human Interaction – Teachers empathize and interact with their learners on a profound level, which can’t be said for AI.

AI Is Mighty But Warrants Caution

People rely on AI for higher efficiency, productivity, innovation, and automation. At the same time, it’s expensive, raises unemployment, and causes many privacy concerns.

That’s why you should be aware of the advantages and disadvantages of artificial intelligence. Striking a balance between the good and bad sides is vital for effective yet ethical implementation.

If you wish to learn more about AI and its uses across industries, consider taking a course by renowned tech experts.

Read the article