Today’s tech-driven world is governed by data – so much so that nearly 98% of all organizations are increasing investment in data.
However, company owners can’t put their feet up after improving their data capabilities. They also need a database management system (DBMS) – a program specifically designed for storing and organizing information efficiently.
When analyzing a DBMS, you need to be thorough like a detective investigating a crime. One of the elements you want to consider is DBMS architecture. It describes the structure of your database and how individual bits of information are related to each other. The importance of DBMS architecture is enormous, as it helps IT experts design and maintain fully functional databases.
But what exactly does a DBMS architecture involve? You’ll find out in this entry. Coming up is an in-depth discussion of database system concepts and architecture.
Overview of DBMS Architecture
Suppose you’re assembling your PC. You can opt for several configurations, such as those with three RAM slots and dual-fan coolers. The same principle applies to DBMS architectures.
Two of the most common architectures are three-level and two-level architectures.
Three-Level Architecture
Three-level architecture is like teacher-parent communication. More often than not, a teacher communicates with parents through children, asking them to convey certain information. In other words, there are layers between the two that don’t allow direct communication.
The same holds for three-level architecture. But instead of just one layer, there are two layers between the database and user: application client and application server.
And as the name suggests, a three-level DBMS architecture has three levels:
- External level – Also known as the view level, this section concerns the part of your database that’s relevant to the user. Everything else is hidden.
- Conceptual level – Put yourself in the position of a scuba diver exploring the ocean layer by layer. Once you reach the external level, you go one segment lower and find the conceptual level. It describes information conceptually and tells you how data segments interact with one another.
- Internal level – Another name for the internal level is the physical level. But what does it deal with? It mainly focuses on how data is stored in your system (e.g., using folders and files).
Two-Level Architecture
When you insert a USB into your PC, you can see the information on your interface. However, the source of the data is on the USB, meaning they’re separated.
Two-level architecture takes the same approach to separating data interface and data structure. Here are the two levels in this DBMS architecture:
- User level – Any application and interface in your database are stored on the user level in a two-level DBMS architecture.
- System level – The system level (aka server level) performs transaction management and other essential processes.
Comparison of the Two Architectures
Determining which architecture works best for your database is like buying a car. You need to consider how easy it is to use and the level of performance you can expect.
On the one hand, the biggest advantage of two-level architectures is that they’re relatively easy to set up. There’s just one layer between the database and the user, resulting in easier database management.
On the other hand, developing a three-level DBMS architecture may take a while since you need to include two layers between the database and the user. That said, three-level architectures are normally superior to two-level architectures due to higher flexibility and the ability to incorporate information from various sources.
Components of DBMS Architecture
You’ve scratched the surface of database system concepts and architecture, but don’t stop there. It’s time to move on to the basics to the most important elements of a DBMS architecture:
Data Storage
The fact that DBMS architectures have data storage solutions is carved in stone. What exactly are those solutions? The most common ones are as follows:
- Data files – How many files do you have on your PC? If it’s a lot, you’re doing exactly what administrators of DBMS architectures are doing. A large number of them store data in files, and each file is categorized into blocks.
- Indexes – You want your database operations to be like lightning bolts, i.e. super-fast. You can incorporate indexes to accomplish this goal. They point to data columns for quick retrieval.
- Data dictionary – Also known as system logs, data dictionaries contain metadata – information about your data.
Data Manipulation
A large number of companies still utilize manual data management methods. But using this format is like shooting yourself in the foot when there are advanced data manipulation methods are available. These allow you to process and retrieve data within seconds through different techniques:
- Query processor – Query processing refers to extracting data from your DBMS architecture. It operates like any other multi-stage process. It involves parsing, translation, optimization, and evaluation.
- Query optimizer – A DBMS architecture administrator can perform various query optimization tasks to achieve desired results faster.
- Execution engine – Whenever you want your architecture to do something, you send requests. But something needs to process the requests – that something is the execution engine.
Data Control
We’re continuing our journey through an average DBMS architecture. Our next stop is data control, which is comprised of these key elements:
- Transaction management – When carrying out multiple transactions, how does the system prioritize one over another? The answer lies in transaction management, which is also about processing multiple transactions side by side.
- Concurrency control – Database architecture is like an ocean teeming with life. Countless operations take place simultaneously. As a result, the system needs concurrency control to manage these concurrent tasks.
- Recovery management – What if your DBMS architecture fails? Do you give up on your project? No – the system has robust recovery management tools to retrieve your information and reduce downtime.
Database System Concepts
To give you a better understanding of a DBMS architecture, let’s describe the most important concepts regarding this topic.
Data Models
Data models do to information what your folders do to files – organize them. There are four major types of data models:
- Hierarchical model – Top-down and bottom-up storage solutions are known as hierarchical models. They’re characterized by tree-like structures.
- Network model – Hierarchical models are generally used for basic data relationships. If you want to analyze complex relationships, you need to kick things up a notch with network models. They enable you to represent huge quantities of complex information without a hitch.
- Relational model – Relations are merely tables with values. A relational model is a collection of these relations, indicating how data is connected to other data.
- Object-oriented model – Programming languages regularly use objects. An object-oriented model stores information as models and is usually more complex than other models.
Database Schema and Instances
Another concept you should familiarize yourself with is schemas and instances.
- Definition of schema and instance – Schemas are like summaries, providing a basic description of databases. Instances tell you what information is stored in a database.
- Importance of schema in DBMS architecture – Schemas are essential because they help organize data by providing a clear outline.
Data Independence
The ability of other pieces of information to remain unaffected after you change one bit of data is known as data independence. What are the different types of data independence, and what makes them so important?
- Logical data independence – If you can modify logical schemas without altering the rest of the system, your logical data is independent.
- Physical data independence – Physical data is independent if it remains unaffected when changing your hardware, such as SSD disks.
- Significance of data independence in DBMS architecture – Independent data is crucial for saving time in database management because it reduces the amount of information that needs to be processed.
Efficient Database Management Systems
Database management systems have a lot in common with other tech-based systems. For example, you won’t ignore problems that arise on your PC, be they CPU or graphics card issues. You’ll take action to optimize the performance of the device and solve those issues.
That’s exactly what 75% of developers and administrators of database management systems do. They go the extra mile to enhance the performance, scalability, flexibility, security, and integrity of their architecture.
Performance Optimization Techniques
- Indexing – By pointing to certain data in tables, indexes speed up database management.
- Query optimization – This process is about finding the most efficient method of executing queries.
- Caching – Frequently accessed information is cached to accelerate retrieval.
Scalability and Flexibility
- Horizontal scaling – Horizontal scaling involves increasing the number of servers.
- Vertical scaling – An administrator can boost the performance of the server to make the system more scalable.
- Distributed databases – Databases are like smartphones in that they can easily overload. Pressure can be alleviated with distributed databases, which store information in multiple locations.
Security and Integrity
- Access control – Restricting access is key to preventing cyber security attacks.
- Data encryption – Administrators often encrypt their DBMS architecture to protect sensitive information.
- Backup and recovery – A robust backup plan helps IT experts recover from shutdowns and other unforeseen problems.
Preparing for the Future Is Critical
DBMS architecture is the underlying structure of a database management system. It consists of several elements, all of which work together to create a fully functional data infrastructure.
Understanding the basic elements of DBMS architecture is vital for IT professionals who want to be well-prepared for future changes, such as hybrid environments. As the old saying goes – success depends upon preparation.
Related posts
Source:
- The Yuan, Published on October 25th, 2024.
By Zorina Alliata
ALEXANDRIA, VIRGINIA – In recent years, artificial intelligence (AI) has grown and developed into something much bigger than most people could have ever expected. Jokes about robots living among humans no longer seem so harmless, and the average person began to develop a new awareness of AI and all its uses. Unfortunately, however – as is often a human tendency – people became hyper-fixated on the negative aspects of AI, often forgetting about all the good it can do. One should therefore take a step back and remember that humanity is still only in the very early stages of developing real intelligence outside of the human brain, and so at this point AI is almost like a small child that humans are raising.
AI is still developing, growing, and adapting, and like any new tech it has its drawbacks. At one point, people had fears and doubts about electricity, calculators, and mobile phones – but now these have become ubiquitous aspects of everyday life, and it is not difficult to imagine a future in which this is the case for AI as well.
The development of AI certainly comes with relevant and real concerns that must be addressed – such as its controversial role in education, the potential job losses it might lead to, and its bias and inaccuracies. For every fear, however, there is also a ray of hope, and that is largely thanks to people and their ingenuity.
Looking at education, many educators around the world are worried about recent developments in AI. The frequently discussed ChatGPT – which is now on its fourth version – is a major red flag for many, causing concerns around plagiarism and creating fears that it will lead to the end of writing as people know it. This is one of the main factors that has increased the pessimistic reporting about AI that one so often sees in the media.
However, when one actually considers ChatGPT in its current state, it is safe to say that these fears are probably overblown. Can ChatGPT really replace the human mind, which is capable of so much that AI cannot replicate? As for educators, instead of assuming that all their students will want to cheat, they should instead consider the options for taking advantage of new tech to enhance the learning experience. Most people now know the tell-tale signs for identifying something that ChatGPT has written. Excessive use of numbered lists, repetitive language and poor comparison skills are just three ways to tell if a piece of writing is legitimate or if a bot is behind it. This author personally encourages the use of AI in the classes I teach. This is because it is better for students to understand what AI can do and how to use it as a tool in their learning instead of avoiding and fearing it, or being discouraged from using it no matter the circumstances.
Educators should therefore reframe the idea of ChatGPT in their minds, have open discussions with students about its uses, and help them understand that it is actually just another tool to help them learn more efficiently – and not a replacement for their own thoughts and words. Such frank discussions help students develop their critical thinking skills and start understanding their own influence on ChatGPT and other AI-powered tools.
By developing one’s understanding of AI’s actual capabilities, one can begin to understand its uses in everyday life. Some would have people believe that this means countless jobs will inevitably become obsolete, but that is not entirely true. Even if AI does replace some jobs, it will still need industry experts to guide it, meaning that entirely new jobs are being created at the same time as some older jobs are disappearing.
Adapting to AI is a new challenge for most industries, and it is certainly daunting at times. The reality, however, is that AI is not here to steal people’s jobs. If anything, it will change the nature of some jobs and may even improve them by making human workers more efficient and productive. If AI is to be a truly useful tool, it will still need humans. One should remember that humans working alongside AI and using it as a tool is key, because in most cases AI cannot do the job of a person by itself.
Is AI biased?
Why should one view AI as a tool and not a replacement? The main reason is because AI itself is still learning, and AI-powered tools such as ChatGPT do not understand bias. As a result, whenever ChatGPT is asked a question it will pull information from anywhere, and so it can easily repeat old biases. AI is learning from previous data, much of which is biased or out of date. Data about home ownership and mortgages, e.g., are often biased because non-white people in the United States could not get a mortgage until after the 1960s. The effect on data due to this lending discrimination is only now being fully understood.
AI is certainly biased at times, but that stems from human bias. Again, this just reinforces the need for humans to be in control of AI. AI is like a young child in that it is still absorbing what is happening around it. People must therefore not fear it, but instead guide it in the right direction.
For AI to be used as a tool, it must be treated as such. If one wanted to build a house, one would not expect one’s tools to be able to do the job alone – and AI must be viewed through a similar lens. By acknowledging this aspect of AI and taking control of humans’ role in its development, the world would be better placed to reap the benefits and quash the fears associated with AI. One should therefore not assume that all the doom and gloom one reads about AI is exactly as it seems. Instead, people should try experimenting with it and learning from it, and maybe soon they will realize that it was the best thing that could have happened to humanity.
Read the full article below:
Source:
- The European Business Review, Published on October 27th, 2024.
By Lokesh Vij
Lokesh Vij is a Professor of BSc in Modern Computer Science & MSc in Applied Data Science & AI at Open Institute of Technology. With over 20 years of experience in cloud computing infrastructure, cybersecurity and cloud development, Professor Vij is an expert in all things related to data and modern computer science.
In today’s rapidly evolving technological landscape, the fields of blockchain and cloud computing are transforming industries, from finance to healthcare, and creating new opportunities for innovation. Integrating these technologies into education is not merely a trend but a necessity to equip students with the skills they need to thrive in the future workforce. Though both technologies are independently powerful, their potential for innovation and disruption is amplified when combined. This article explores the pressing questions surrounding the inclusion of blockchain and cloud computing in education, providing a comprehensive overview of their significance, benefits, and challenges.
The Technological Edge and Future Outlook
Cloud computing has revolutionized how businesses and individuals’ access and manage data and applications. Benefits like scalability, cost efficiency (including eliminating capital expenditure – CapEx), rapid innovation, and experimentation enable businesses to develop and deploy new applications and services quickly without the constraints of traditional on-premises infrastructure – thanks to managed services where cloud providers manage the operating system, runtime, and middleware, allowing businesses to focus on development and innovation. According to Statista, the cloud computing market is projected to reach a significant size of Euro 250 billion or even higher by 2028 (from Euro 110 billion in 2024), with a substantial Compound Annual Growth Rate (CAGR) of 22.78%. The widespread adoption of cloud computing by businesses of all sizes, coupled with the increasing demand for cloud-based services and applications, fuels the need for cloud computing professionals.
Blockchain, a distributed ledger technology, has paved the way by providing a secure, transparent, and tamper-proof way to record transactions (highly resistant to hacking and fraud). In 2021, European blockchain startups raised $1.5 billion in funding, indicating strong interest and growth potential. Reports suggest the European blockchain market could reach $39 billion by 2026, with a significant CAGR of over 47%. This growth is fueled by increasing adoption in sectors like finance, supply chain, and healthcare.
Addressing the Skills Gap
Reports from the World Economic Forum indicate that 85 million jobs may be displaced by a shift in the division of labor between humans and machines by 2025. However, 97 million new roles may emerge that are more adapted to the new division of labor between humans, machines, and algorithms, many of which will require proficiency in cloud computing and blockchain.
Furthermore, the World Economic Forum predicts that by 2027, 10% of the global GDP will be tokenized and stored on the blockchain. This massive shift means a surge in demand for blockchain professionals across various industries. Consider the implications of 10% of the global GDP being on the blockchain: it translates to a massive need for people who can build, secure, and manage these systems. We’re talking about potentially millions of jobs worldwide.
The European Blockchain Services Infrastructure (EBSI), an EU initiative, aims to deploy cross-border blockchain services across Europe, focusing on areas like digital identity, trusted data sharing, and diploma management. The EU’s MiCA (Crypto-Asset Regulation) regulation, expected to be fully implemented by 2025, will provide a clear legal framework for crypto-assets, fostering innovation and investment in the blockchain space. The projected growth and supportive regulatory environment point to a rising demand for blockchain professionals in Europe. Developing skills related to EBSI and its applications could be highly advantageous, given its potential impact on public sector blockchain adoption. Understanding the MiCA regulation will be crucial for blockchain roles related to crypto-assets and decentralized finance (DeFi).
Furthermore, European businesses are rapidly adopting digital technologies, with cloud computing as a core component of this transformation. GDPR (Data Protection Regulations) and other data protection laws push businesses to adopt secure and compliant cloud solutions. Many European countries invest heavily in cloud infrastructure and promote cloud adoption across various sectors. Artificial intelligence and machine learning will be deeply integrated into cloud platforms, enabling smarter automation, advanced analytics, and more efficient operations. This allows developers to focus on building applications without managing servers, leading to faster development cycles and increased scalability. Processing data closer to the source (like on devices or local servers) will become crucial for applications requiring real-time responses, such as IoT and autonomous vehicles.
The projected growth indicates a strong and continuous demand for blockchain and cloud professionals in Europe and worldwide. As we stand at the “crossroads of infinity,” there is a significant skill shortage, which will likely increase with the rapid adoption of these technologies. A 2023 study by SoftwareOne found that 95% of businesses globally face a cloud skills gap. Specific skills in high demand include cloud security, cloud-native development, and expertise in leading cloud platforms like AWS, Azure, and Google Cloud. The European Commission’s Digital Economy and Society Index (DESI) highlights a need for improved digital skills in areas like blockchain to support the EU’s digital transformation goals. A 2023 report by CasperLabs found that 90% of businesses in the US, UK, and China adopt blockchain, but knowledge gaps and interoperability challenges persist.
The Role of Educational Institutions
This surge in demand necessitates a corresponding increase in qualified individuals who can design, implement, and manage cloud-based and blockchain solutions. Educational institutions have a critical role to play in bridging this widening skills gap and ensuring a pipeline of talent ready to meet the demands of this burgeoning industry.
To effectively prepare the next generation of cloud computing and blockchain experts, educational institutions need to adopt a multi-pronged approach. This includes enhancing curricula with specialized programs, integrating cloud and blockchain concepts into existing courses, and providing hands-on experience with leading technology platforms.
Furthermore, investing in faculty development to ensure they possess up-to-date knowledge and expertise is crucial. Collaboration with industry partners through internships, co-teach programs, joint research projects, and mentorship programs can provide students with invaluable real-world experience and insights.
Beyond formal education, fostering a culture of lifelong learning is essential. Offering continuing education courses, boot camps, and online resources enables professionals to upskill or reskill and stay abreast of the latest advancements in cloud computing. Actively promoting awareness of career paths and opportunities in this field and facilitating connections with potential employers can empower students to thrive in the dynamic and evolving landscape of cloud computing and blockchain technologies.
By taking these steps, educational institutions can effectively prepare the young generation to fill the skills gap and thrive in the rapidly evolving world of cloud computing and blockchain.
Read the full article below:
Have questions?
Visit our FAQ page or get in touch with us!
Write us at +39 335 576 0263
Get in touch at hello@opit.com
Talk to one of our Study Advisors
We are international
We can speak in: