By Mike Scott
Summary
Algorithms are the essence of data mining and machine learning – the two processes 60% of organizations utilize to streamline their operations. Businesses can choose from several algorithms to polish their workflows, but the decision tree algorithm might be the most common.
This algorithm is all about simplicity. It branches out in multiple directions, just like trees, and determines whether something is true or false. In turn, data scientists and machine learning professionals can further dissect the data and help key stakeholders answer various questions.
This only scratches the surface of this algorithm – but it’s time to delve deeper into the concept. Let’s take a closer look at the decision tree machine learning algorithm, its components, types, and applications.
The decision tree algorithm in data mining and machine learning may sound relatively simple due to its similarities with standard trees. But like with conventional trees, which consist of leaves, branches, roots, and many other elements, there’s a lot to uncover with this algorithm. We’ll start by defining this concept and listing the main components.
If you’re a college student, you learn in two ways – supervised and unsupervised. The same division can be found in algorithms, and the decision tree belongs to the former category. It’s a supervised algorithm you can use to regress or classify data. It relies on training data to predict values or outcomes.
What’s the first thing you notice when you look at a tree? If you’re like most people, it’s probably the leaves and branches.
The decision tree algorithm has the same elements. Add nodes to the equation, and you have the entire structure of this algorithm right in front of you.
When you go to a park, you may notice various tree species: birch, pine, oak, and acacia. By the same token, there are multiple types of decision tree algorithms:
Knowing the definition, types, and components of decision trees is useful, but it doesn’t give you a complete picture of this concept. So, buckle your seatbelt and get ready for an in-depth overview of this algorithm.
Just as there are hierarchies in your family or business, there are hierarchies in any decision tree in data mining. Top-down arrangements start with a problem you need to solve and break it down into smaller chunks until you reach a solution. Bottom-up alternatives sort of wing it – they enable data to flow with some supervision and guide the user to results.
No discussion about decision tree algorithms is complete without looking at the most significant concept from this area:
As previously mentioned, decision trees are like trees in many ways. Conventional trees branch out in random directions. Decision trees share this randomness, which is where entropy comes in.
Entropy tells you the degree of randomness (or surprise) of the information in your decision tree.
A decision tree isn’t the same before and after splitting a root node into other nodes. You can use information gain to determine how much it’s changed. This metric indicates how much your data has improved since your last split. It tells you what to do next to make better decisions.
Mistakes can happen, even in the most carefully designed decision tree algorithms. However, you might be able to prevent errors if you calculate their probability.
Enter the Gini index (Gini impurity). It establishes the likelihood of misclassifying an instance when choosing it randomly.
You don’t need every branch on your apple or pear tree to get a great yield. Likewise, not all data is necessary for a decision tree algorithm. Pruning is a compression technique that allows you to get rid of this redundant information that keeps you from classifying useful data.
Growing a tree is straightforward – you plant a seed and water it until it is fully formed. Creating a decision tree is simpler than some other algorithms, but quite a few steps are involved nevertheless.
Data preparation might be the most important step in creating a decision tree. It’s comprised of three critical operations:
Data cleaning is the process of removing unwanted or unnecessary information from your decision trees. It’s similar to pruning, but unlike pruning, it’s essential to the performance of your algorithm. It’s also comprised of several steps, such as normalization, standardization, and imputation.
Time is money, which especially applies to decision trees. That’s why you need to incorporate feature selection into your building process. It boils down to choosing only those features that are relevant to your data set, depending on the original issue.
The procedure of splitting your tree nodes into sub-nodes is known as data splitting. Once you split data, you get two data points. One evaluates your information, while the other trains it, which brings us to the next step.
Now it’s time to train your decision tree. In other words, you need to teach your model how to make predictions by selecting an algorithm, setting parameters, and fitting your model.
There’s no one-size-fits-all solution when designing decision trees. Users select an algorithm that works best for their application. For example, the Random Forest algorithm is the go-to choice for many companies because it can combine multiple decision trees.
How far your tree goes is just one of the parameters you need to set. You also need to choose between entropy and Gini values, set the number of samples when splitting nodes, establish your randomness, and adjust many other aspects.
If you’ve fitted your model properly, your data will be more accurate. The outcomes need to match the labeled data closely (but not too close to avoid overfitting) if you want relevant insights to improve your decision-making.
Don’t put your feet up just yet. Your decision tree might be up and running, but how well does it perform? There are two ways to answer this question: cross-validation and performance metrics.
Cross-validation is one of the most common ways of gauging the efficacy of your decision trees. It compares your model to training data, allowing you to determine how well your system generalizes.
Several metrics can be used to assess the performance of your decision trees:
This is the proximity of your measurements to the requested values. If your model is accurate, it matches the values established in the training data.
By contrast, precision tells you how close your output values are to each other. In other words, it shows you how harmonized individual values are.
Recall is the number of data samples in the desired class. This class is also known as the positive class. Naturally, you want your recall to be as high as possible.
F1 score is the median value of your precision and recall. Most professionals consider an F1 of over 0.9 a very good score. Scores between 0.8 and 0.5 are OK, but anything less than 0.5 is bad. If you get a poor score, it means your data sets are imprecise and imbalanced.
The final step is to visualize your decision tree. In this stage, you shed light on your findings and make them digestible for non-technical team members using charts or other common methods.
The interest in machine learning is on the rise. One of the reasons is that you can apply decision trees in virtually any field:
Advantages:
Disadvantages:
The decision tree machine learning algorithm is a simple yet powerful algorithm for classifying or regressing data. The convenient structure is perfect for decision-making, as it organizes information in an accessible format. As such, it’s ideal for making data-driven decisions.
If you want to learn more about this fascinating topic, don’t stop your exploration here. Decision tree courses and other resources can bring you one step closer to applying decision trees to your work.
Visit our FAQ page or get in touch with us!
Write us at +39 335 576 0263
Get in touch at hello@opit.com
Talk to one of our Study Advisors
We can speak in: