In a world of Big Data, companies need people who have the ability to analyze and reach conclusions from the reams of data they collect about customers. But data science extends far beyond the corporate. Any industry that uses data (i.e., practically all of them) needs data-minded people who can use the latest AI-driven tools to help them scour large datasets.
That’s where you come in. As a potential data scientist, you’ll enter an industry that’s experiencing enormous growth to the point where it will be worth $103 billion (approx. €96.37 billion) by 2027. That market growth translates into demand for talented data scientists, which is already seen today as Coresignal’s data – 8,000 available job postings across eight leading positions in the first five months of 2022 alone – demonstrates.
So, the benefits of earning a free data science certification are obvious – you’re entering a growing industry with huge demand that leads to a better salary. But you need to know which courses will help you break into that industry. This article highlights four of the best free data science courses around.
Top Four Free Data Science Courses
As wonderful as the word “free” may be to budget-conscious students, you still need to know that you’re getting something of value from your data science course. The following options deliver a stellar educational experience and leave you with a qualification that employers recognize.
An Introduction to Data Science (Udemy)
Every journey starts with a first step, and it’s crucial that you take the first step into data science with a course that covers the basics and lays a foundation on which you can build. An Introduction to Data Science does just that by teaching you what data science is and how it applies to the modern world.
That teaching starts with a history lesson that shows how interactions with data (and data collection methods) have evolved over the years. From there, you’ll learn how data science applies in modern industry and discover the difference between actual valuable data and the oodles of “noise” that are in datasets.
It’s a quick and easy course, weighing in at 43 minutes spread across six video lectures, so you don’t have to make a huge time commitment. It’s delivered online by a Google Certified Python Expert named Kumar Rajmani Bapat and is ideal for getting the basics of data science down before you move on to a more intensive or focused course.
But the focus on the basics is also the biggest issue with this course. Rather than showing you the techniques a data scientist uses, the course focuses on what data science is and offers a roadmap for getting into the industry. It’s more about “what” than “how,” which may make the course too rudimentary for people who already have some knowledge of the subject. It’s also worth noting that this isn’t one of those free data science courses with certificate, as you’ll need to pay for an Udemy subscription to get your hands on a certificate of completion. You can still watch the videos and complete the course for free, though.
Introduction to Data Science (SkillUP)
With a similar name to the above Udemy course, you’d be forgiven for assuming that SkillUP’s Introduction to Data Science program teaches the same stuff. Though the course is aimed squarely at beginners, it takes a more in-depth approach that makes it the ideal follow-up to Udemy’s offering.
You start with the basic spiel about what data science is and how it applies to modern industry. But from there, the course tips into actual application by demonstrating some of the best Python programming libraries to use in the field. You’ll also dig deep into the algorithms used in data science, with linear regression analysis, confusion matrices, and logistic regression all getting some time to shine.
Given this higher focus on the skills you’ll need to learn to become a data scientist, the course is longer than Udemy’s offering. It clocks in at seven hours of videos and tutorials, all of which you access online and work through at your own pace. The course also expects you to have a solid grasp of math and programming (some experience with Python is a must) so this isn’t ideal for complete beginners to computer science.
This is a data science free online course with certificate, though there is a caveat. SkillUP only provides 90 days of free access to the course. If you feel it will take longer than that to get through the seven hours of tutorials, you’ll need to enroll in a paid subscription. The best approach here is to only start the course when you’re confident that you can block out the time needed to wrap it up within 90 days.
IBM Data Science Professional Certificate (Coursera)
Aimed squarely at the career-focused individual, IBM’s data science course is all about building the skills that set you on the right path to a career in the field. It takes a more practical approach, starting you off with the fundamentals before pushing you into a project where you’ll work with a real-world dataset and publish a report that’s analyzed by stakeholders simulating what you’ll experience in the working world.
The good news is that you don’t need to know anything about data science to get started with the course. It holds your hand as you learn the basics of what data science is (including what a data scientist actually does) and teaches you about the tools and programming languages you’ll use in the field. Once you have a grasp on the fundamentals, you’ll learn how to analyze and visualize data, in addition to creating machine learning models using Python, before wrapping up with the previously mentioned project.
The IBM Data Science Professional Certificate is a more intensive course than the others on this list. It’s essentially a mini degree, requiring you to invest 10 hours per week for five months into your learning. However, the course is provided entirely online, allowing you to schedule that learning time as you see fit. You’ll work through 10 modules as part of the certificate.
That time commitment may be a downside for those who can’t put 10 hours per week into a course, though that downside is outweighed heavily by the fact that you come out with an IBM certification. Having one of the leading names in computing on your certificate is enough to make any employer sit up and take notice.
Data Analysis With Python (freeCodeCamp)
The Python programming language (along with SQL and a few others) underpins almost everything that the modern data scientist does. Data Analysis with Python takes that concept and runs with it by providing a course that digs into using Python to read, analyze, and visualize data.
Along the way, you’ll learn about the basics of both Python and data analysis, though the real highlight comes from the many libraries and tools the course introduces. You’ll use Seaborn, Numpy, Mayplotlib, and Pandas during the course. All of which are libraries used by professionals to extract and visualize data. The course wraps up with a series of five projects, each testing a different set of skills learned via the modules, with your certification coming after you’ve completed all five.
This is one of those free data science courses that’s entirely self-paced and there are no time constraints or commitments involved. Once you’ve signed up for freeCodeCamp, you can save your progress through the course at any point and return whenever you’re ready. Theoretically, this means you could start the course, save your progress, and then return to it months later, though that isn’t recommended if you want to keep the information fresh in your mind. All told, the course contains 37 modules, plus the five projects required for certification, making it one of the most in-depth Python courses around.
The focus on Python is great for those who are unfamiliar with the language, though it also creates some issues. Namely, this isn’t the right course for those who don’t understand data science fundamentals. It jumps straight into analyzing datasets using Python, so those who don’t really understand what datasets are or how they apply to the modern world should start with a more beginner-oriented course.
Tips for Choosing the Right Data Science Course
You get the same benefit from all of the listed data science online courses – free entry. But each course offers something different. Use these tips to determine which is the right choice for you:
- Assess your current skill level to pick a course that delivers what you need to know right now rather than a course that forces you to run before you can walk.
- Determine your learning goals so you can see how the course fits into your roadmap for becoming a data scientist.
- Consider the course’s format and duration as both will play a huge role in how you schedule your learning around your other commitments, be they work-related or personal.
- Look for courses that offer hands-on project work once you’ve moved beyond learning the basics of data science.
- Read reviews and testimonials from other students to see if people in your position get actual value from the course.
Start Your Journey With Free Data Science Courses Online
Every journey starts with a first step, and that first step could take you into a career that has massive potential for growth if you opt for the data science path. The four courses listed here each offer something different, from exploring the basics of what data science is to digging deep into the programming tools you’ll use to conduct data analysis and visualization. Completing one of the four sets you on the right path, though completing all four gives you a solid grounding (and a set of certifications) that make you immensely attractive to employers.
Related posts
Source:
- The Yuan, Published on October 25th, 2024.
By Zorina Alliata
Artificial intelligence is a classic example of a mismatch between perceptions and reality, as people tend to overlook its positive aspects and fear it far more than what is warranted by its actual capabilities, argues AI strategist and professor Zorina Alliata.
ALEXANDRIA, VIRGINIA – In recent years, artificial intelligence (AI) has grown and developed into something much bigger than most people could have ever expected. Jokes about robots living among humans no longer seem so harmless, and the average person began to develop a new awareness of AI and all its uses. Unfortunately, however – as is often a human tendency – people became hyper-fixated on the negative aspects of AI, often forgetting about all the good it can do. One should therefore take a step back and remember that humanity is still only in the very early stages of developing real intelligence outside of the human brain, and so at this point AI is almost like a small child that humans are raising.
AI is still developing, growing, and adapting, and like any new tech it has its drawbacks. At one point, people had fears and doubts about electricity, calculators, and mobile phones – but now these have become ubiquitous aspects of everyday life, and it is not difficult to imagine a future in which this is the case for AI as well.
The development of AI certainly comes with relevant and real concerns that must be addressed – such as its controversial role in education, the potential job losses it might lead to, and its bias and inaccuracies. For every fear, however, there is also a ray of hope, and that is largely thanks to people and their ingenuity.
Looking at education, many educators around the world are worried about recent developments in AI. The frequently discussed ChatGPT – which is now on its fourth version – is a major red flag for many, causing concerns around plagiarism and creating fears that it will lead to the end of writing as people know it. This is one of the main factors that has increased the pessimistic reporting about AI that one so often sees in the media.
However, when one actually considers ChatGPT in its current state, it is safe to say that these fears are probably overblown. Can ChatGPT really replace the human mind, which is capable of so much that AI cannot replicate? As for educators, instead of assuming that all their students will want to cheat, they should instead consider the options for taking advantage of new tech to enhance the learning experience. Most people now know the tell-tale signs for identifying something that ChatGPT has written. Excessive use of numbered lists, repetitive language and poor comparison skills are just three ways to tell if a piece of writing is legitimate or if a bot is behind it. This author personally encourages the use of AI in the classes I teach. This is because it is better for students to understand what AI can do and how to use it as a tool in their learning instead of avoiding and fearing it, or being discouraged from using it no matter the circumstances.
Educators should therefore reframe the idea of ChatGPT in their minds, have open discussions with students about its uses, and help them understand that it is actually just another tool to help them learn more efficiently – and not a replacement for their own thoughts and words. Such frank discussions help students develop their critical thinking skills and start understanding their own influence on ChatGPT and other AI-powered tools.
By developing one’s understanding of AI’s actual capabilities, one can begin to understand its uses in everyday life. Some would have people believe that this means countless jobs will inevitably become obsolete, but that is not entirely true. Even if AI does replace some jobs, it will still need industry experts to guide it, meaning that entirely new jobs are being created at the same time as some older jobs are disappearing.
Adapting to AI is a new challenge for most industries, and it is certainly daunting at times. The reality, however, is that AI is not here to steal people’s jobs. If anything, it will change the nature of some jobs and may even improve them by making human workers more efficient and productive. If AI is to be a truly useful tool, it will still need humans. One should remember that humans working alongside AI and using it as a tool is key, because in most cases AI cannot do the job of a person by itself.
Is AI biased?
Why should one view AI as a tool and not a replacement? The main reason is because AI itself is still learning, and AI-powered tools such as ChatGPT do not understand bias. As a result, whenever ChatGPT is asked a question it will pull information from anywhere, and so it can easily repeat old biases. AI is learning from previous data, much of which is biased or out of date. Data about home ownership and mortgages, e.g., are often biased because non-white people in the United States could not get a mortgage until after the 1960s. The effect on data due to this lending discrimination is only now being fully understood.
AI is certainly biased at times, but that stems from human bias. Again, this just reinforces the need for humans to be in control of AI. AI is like a young child in that it is still absorbing what is happening around it. People must therefore not fear it, but instead guide it in the right direction.
For AI to be used as a tool, it must be treated as such. If one wanted to build a house, one would not expect one’s tools to be able to do the job alone – and AI must be viewed through a similar lens. By acknowledging this aspect of AI and taking control of humans’ role in its development, the world would be better placed to reap the benefits and quash the fears associated with AI. One should therefore not assume that all the doom and gloom one reads about AI is exactly as it seems. Instead, people should try experimenting with it and learning from it, and maybe soon they will realize that it was the best thing that could have happened to humanity.
Read the full article below:
Source:
- The European Business Review, Published on October 27th, 2024.
By Lokesh Vij
Lokesh Vij is a Professor of BSc in Modern Computer Science & MSc in Applied Data Science & AI at Open Institute of Technology. With over 20 years of experience in cloud computing infrastructure, cybersecurity and cloud development, Professor Vij is an expert in all things related to data and modern computer science.
In today’s rapidly evolving technological landscape, the fields of blockchain and cloud computing are transforming industries, from finance to healthcare, and creating new opportunities for innovation. Integrating these technologies into education is not merely a trend but a necessity to equip students with the skills they need to thrive in the future workforce. Though both technologies are independently powerful, their potential for innovation and disruption is amplified when combined. This article explores the pressing questions surrounding the inclusion of blockchain and cloud computing in education, providing a comprehensive overview of their significance, benefits, and challenges.
The Technological Edge and Future Outlook
Cloud computing has revolutionized how businesses and individuals’ access and manage data and applications. Benefits like scalability, cost efficiency (including eliminating capital expenditure – CapEx), rapid innovation, and experimentation enable businesses to develop and deploy new applications and services quickly without the constraints of traditional on-premises infrastructure – thanks to managed services where cloud providers manage the operating system, runtime, and middleware, allowing businesses to focus on development and innovation. According to Statista, the cloud computing market is projected to reach a significant size of Euro 250 billion or even higher by 2028 (from Euro 110 billion in 2024), with a substantial Compound Annual Growth Rate (CAGR) of 22.78%. The widespread adoption of cloud computing by businesses of all sizes, coupled with the increasing demand for cloud-based services and applications, fuels the need for cloud computing professionals.
Blockchain, a distributed ledger technology, has paved the way by providing a secure, transparent, and tamper-proof way to record transactions (highly resistant to hacking and fraud). In 2021, European blockchain startups raised $1.5 billion in funding, indicating strong interest and growth potential. Reports suggest the European blockchain market could reach $39 billion by 2026, with a significant CAGR of over 47%. This growth is fueled by increasing adoption in sectors like finance, supply chain, and healthcare.
Addressing the Skills Gap
Reports from the World Economic Forum indicate that 85 million jobs may be displaced by a shift in the division of labor between humans and machines by 2025. However, 97 million new roles may emerge that are more adapted to the new division of labor between humans, machines, and algorithms, many of which will require proficiency in cloud computing and blockchain.
Furthermore, the World Economic Forum predicts that by 2027, 10% of the global GDP will be tokenized and stored on the blockchain. This massive shift means a surge in demand for blockchain professionals across various industries. Consider the implications of 10% of the global GDP being on the blockchain: it translates to a massive need for people who can build, secure, and manage these systems. We’re talking about potentially millions of jobs worldwide.
The European Blockchain Services Infrastructure (EBSI), an EU initiative, aims to deploy cross-border blockchain services across Europe, focusing on areas like digital identity, trusted data sharing, and diploma management. The EU’s MiCA (Crypto-Asset Regulation) regulation, expected to be fully implemented by 2025, will provide a clear legal framework for crypto-assets, fostering innovation and investment in the blockchain space. The projected growth and supportive regulatory environment point to a rising demand for blockchain professionals in Europe. Developing skills related to EBSI and its applications could be highly advantageous, given its potential impact on public sector blockchain adoption. Understanding the MiCA regulation will be crucial for blockchain roles related to crypto-assets and decentralized finance (DeFi).
Furthermore, European businesses are rapidly adopting digital technologies, with cloud computing as a core component of this transformation. GDPR (Data Protection Regulations) and other data protection laws push businesses to adopt secure and compliant cloud solutions. Many European countries invest heavily in cloud infrastructure and promote cloud adoption across various sectors. Artificial intelligence and machine learning will be deeply integrated into cloud platforms, enabling smarter automation, advanced analytics, and more efficient operations. This allows developers to focus on building applications without managing servers, leading to faster development cycles and increased scalability. Processing data closer to the source (like on devices or local servers) will become crucial for applications requiring real-time responses, such as IoT and autonomous vehicles.
The projected growth indicates a strong and continuous demand for blockchain and cloud professionals in Europe and worldwide. As we stand at the “crossroads of infinity,” there is a significant skill shortage, which will likely increase with the rapid adoption of these technologies. A 2023 study by SoftwareOne found that 95% of businesses globally face a cloud skills gap. Specific skills in high demand include cloud security, cloud-native development, and expertise in leading cloud platforms like AWS, Azure, and Google Cloud. The European Commission’s Digital Economy and Society Index (DESI) highlights a need for improved digital skills in areas like blockchain to support the EU’s digital transformation goals. A 2023 report by CasperLabs found that 90% of businesses in the US, UK, and China adopt blockchain, but knowledge gaps and interoperability challenges persist.
The Role of Educational Institutions
This surge in demand necessitates a corresponding increase in qualified individuals who can design, implement, and manage cloud-based and blockchain solutions. Educational institutions have a critical role to play in bridging this widening skills gap and ensuring a pipeline of talent ready to meet the demands of this burgeoning industry.
To effectively prepare the next generation of cloud computing and blockchain experts, educational institutions need to adopt a multi-pronged approach. This includes enhancing curricula with specialized programs, integrating cloud and blockchain concepts into existing courses, and providing hands-on experience with leading technology platforms.
Furthermore, investing in faculty development to ensure they possess up-to-date knowledge and expertise is crucial. Collaboration with industry partners through internships, co-teach programs, joint research projects, and mentorship programs can provide students with invaluable real-world experience and insights.
Beyond formal education, fostering a culture of lifelong learning is essential. Offering continuing education courses, boot camps, and online resources enables professionals to upskill or reskill and stay abreast of the latest advancements in cloud computing. Actively promoting awareness of career paths and opportunities in this field and facilitating connections with potential employers can empower students to thrive in the dynamic and evolving landscape of cloud computing and blockchain technologies.
By taking these steps, educational institutions can effectively prepare the young generation to fill the skills gap and thrive in the rapidly evolving world of cloud computing and blockchain.
Read the full article below:
Have questions?
Visit our FAQ page or get in touch with us!
Write us at +39 335 576 0263
Get in touch at hello@opit.com
Talk to one of our Study Advisors
We are international
We can speak in: