Any tendency or behavior of a consumer in the purchasing process in a certain period is known as customer behavior. For example, the last two years saw an unprecedented rise in online shopping. Such trends must be analyzed, but this is a nightmare for companies that try to take on the task manually. They need a way to speed up the project and make it more accurate.

Enter machine learning algorithms. Machine learning algorithms are methods AI programs use to complete a particular task. In most cases, they predict outcomes based on the provided information.

Without machine learning algorithms, customer behavior analyses would be a shot in the dark. These models are essential because they help enterprises segment their markets, develop new offerings, and perform time-sensitive operations without making wild guesses.

We’ve covered the definition and significance of machine learning, which only scratches the surface of this concept. The following is a detailed overview of the different types, models, and challenges of machine learning algorithms.

Types of Machine Learning Algorithms

A natural way to kick our discussion into motion is to dissect the most common types of machine learning algorithms. Here’s a brief explanation of each model, along with a few real-life examples and applications.

Supervised Learning

You can come across “supervised learning” at every corner of the machine learning realm. But what is it about, and where is it used?

Definition and Examples

Supervised machine learning is like supervised classroom learning. A teacher provides instructions, based on which students perform requested tasks.

In a supervised algorithm, the teacher is replaced by a user who feeds the system with input data. The system draws on this data to make predictions or discover trends, depending on the purpose of the program.

There are many supervised learning algorithms, as illustrated by the following examples:

  • Decision trees
  • Linear regression
  • Gaussian Naïve Bayes

Applications in Various Industries

When supervised machine learning models were invented, it was like discovering the Holy Grail. The technology is incredibly flexible since it permeates a range of industries. For example, supervised algorithms can:

  • Detect spam in emails
  • Scan biometrics for security enterprises
  • Recognize speech for developers of speech synthesis tools

Unsupervised Learning

On the other end of the spectrum of machine learning lies unsupervised learning. You can probably already guess the difference from the previous type, so let’s confirm your assumption.

Definition and Examples

Unsupervised learning is a model that requires no training data. The algorithm performs various tasks intuitively, reducing the need for your input.

Machine learning professionals can tap into many different unsupervised algorithms:

  • K-means clustering
  • Hierarchical clustering
  • Gaussian Mixture Models

Applications in Various Industries

Unsupervised learning models are widespread across a range of industries. Like supervised solutions, they can accomplish virtually anything:

  • Segment target audiences for marketing firms
  • Grouping DNA characteristics for biology research organizations
  • Detecting anomalies and fraud for banks and other financial enterprises

Reinforcement Learning

How many times have your teachers rewarded you for a job well done? By doing so, they reinforced your learning and encouraged you to keep going.

That’s precisely how reinforcement learning works.

Definition and Examples

Reinforcement learning is a model where an algorithm learns through experimentation. If its action yields a positive outcome, it receives an award and aims to repeat the action. Acts that result in negative outcomes are ignored.

If you want to spearhead the development of a reinforcement learning-based app, you can choose from the following algorithms:

  • Markov Decision Process
  • Bellman Equations
  • Dynamic programming

Applications in Various Industries

Reinforcement learning goes hand in hand with a large number of industries. Take a look at the most common applications:

  • Ad optimization for marketing businesses
  • Image processing for graphic design
  • Traffic control for government bodies

Deep Learning

When talking about machine learning algorithms, you also need to go through deep learning.

Definition and Examples

Surprising as it may sound, deep learning operates similarly to your brain. It’s comprised of at least three layers of linked nodes that carry out different operations. The idea of linked nodes may remind you of something. That’s right – your brain cells.

You can find numerous deep learning models out there, including these:

  • Recurrent neural networks
  • Deep belief networks
  • Multilayer perceptrons

Applications in Various Industries

If you’re looking for a flexible algorithm, look no further than deep learning models. Their ability to help businesses take off is second-to-none:

  • Creating 3D characters in video gaming and movie industries
  • Visual recognition in telecommunications
  • CT scans in healthcare

Popular Machine Learning Algorithms

Our guide has already listed some of the most popular machine-learning algorithms. However, don’t think that’s the end of the story. There are many other algorithms you should keep in mind if you want to gain a better understanding of this technology.

Linear Regression

Linear regression is a form of supervised learning. It’s a simple yet highly effective algorithm that can help polish any business operation in a heartbeat.

Definition and Examples

Linear regression aims to predict a value based on provided input. The trajectory of the prediction path is linear, meaning it has no interruptions. The two main types of this algorithm are:

  • Simple linear regression
  • Multiple linear regression

Applications in Various Industries

Machine learning algorithms have proved to be a real cash cow for many industries. That especially holds for linear regression models:

  • Stock analysis for financial firms
  • Anticipating sports outcomes
  • Exploring the relationships of different elements to lower pollution

Logistic Regression

Next comes logistic regression. This is another type of supervised learning and is fairly easy to grasp.

Definition and Examples

Logistic regression models are also geared toward predicting certain outcomes. Two classes are at play here: a positive class and a negative class. If the model arrives at the positive class, it logically excludes the negative option, and vice versa.

A great thing about logistic regression algorithms is that they don’t restrict you to just one method of analysis – you get three of these:

  • Binary
  • Multinomial
  • Ordinal

Applications in Various Industries

Logistic regression is a staple of many organizations’ efforts to ramp up their operations and strike a chord with their target audience:

  • Providing reliable credit scores for banks
  • Identifying diseases using genes
  • Optimizing booking practices for hotels

Decision Trees

You need only look out the window at a tree in your backyard to understand decision trees. The principle is straightforward, but the possibilities are endless.

Definition and Examples

A decision tree consists of internal nodes, branches, and leaf nodes. Internal nodes specify the feature or outcome you want to test, whereas branches tell you whether the outcome is possible. Leaf nodes are the so-called end outcome in this system.

The four most common decision tree algorithms are:

  • Reduction in variance
  • Chi-Square
  • ID3
  • Cart

Applications in Various Industries

Many companies are in the gutter and on the verge of bankruptcy because they failed to raise their services to the expected standards. However, their luck may turn around if they apply decision trees for different purposes:

  • Improving logistics to reach desired goals
  • Finding clients by analyzing demographics
  • Evaluating growth opportunities

Support Vector Machines

What if you’re looking for an alternative to decision trees? Support vector machines might be an excellent choice.

Definition and Examples

Support vector machines separate your data with surgically accurate lines. These lines divide the information into points close to and far away from the desired values. Based on their proximity to the lines, you can determine the outliers or desired outcomes.

There are as many support vector machines as there are specks of sand on Copacabana Beach (not quite, but the number is still considerable):

  • Anova kernel
  • RBF kernel
  • Linear support vector machines
  • Non-linear support vector machines
  • Sigmoid kernel

Applications in Various Industries

Here’s what you can do with support vector machines in the business world:

  • Recognize handwriting
  • Classify images
  • Categorize text

Neural Networks

The above deep learning discussion lets you segue into neural networks effortlessly.

Definition and Examples

Neural networks are groups of interconnected nodes that analyze training data previously provided by the user. Here are a few of the most popular neural networks:

  • Perceptrons
  • Convolutional neural networks
  • Multilayer perceptrons
  • Recurrent neural networks

Applications in Various Industries

Is your imagination running wild? That’s good news if you master neural networks. You’ll be able to utilize them in countless ways:

  • Voice recognition
  • CT scans
  • Commanding unmanned vehicles
  • Social media monitoring

K-means Clustering

The name “K-means” clustering may sound daunting, but no worries – we’ll break down the components of this algorithm into bite-sized pieces.

Definition and Examples

K-means clustering is an algorithm that categorizes data into a K-number of clusters. The information that ends up in the same cluster is considered related. Anything that falls beyond the limit of a cluster is considered an outlier.

These are the most widely used K-means clustering algorithms:

  • Hierarchical clustering
  • Centroid-based clustering
  • Density-based clustering
  • Distribution-based clustering

Applications in Various Industries

A bunch of industries can benefit from K-means clustering algorithms:

  • Finding optimal transportation routes
  • Analyzing calls
  • Preventing fraud
  • Criminal profiling

Principal Component Analysis

Some algorithms start from certain building blocks. These building blocks are sometimes referred to as principal components. Enter principal component analysis.

Definition and Examples

Principal component analysis is a great way to lower the number of features in your data set. Think of it like downsizing – you reduce the number of individual elements you need to manage to streamline overall management.

The domain of principal component analysis is broad, encompassing many types of this algorithm:

  • Sparse analysis
  • Logistic analysis
  • Robust analysis
  • Zero-inflated dimensionality reduction

Applications in Various Industries

Principal component analysis seems useful, but what exactly can you do with it? Here are a few implementations:

  • Finding patterns in healthcare records
  • Resizing images
  • Forecasting ROI

 

Challenges and Limitations of Machine Learning Algorithms

No computer science field comes without drawbacks. Machine learning algorithms also have their fair share of shortcomings:

  • Overfitting and underfitting – Overfitted applications fail to generalize training data properly, whereas under-fitted algorithms can’t map the link between training data and desired outcomes.
  • Bias and variance – Bias causes an algorithm to oversimplify data, whereas variance makes it memorize training information and fail to learn from it.
  • Data quality and quantity – Poor quality, too much, or too little data can render an algorithm useless.
  • Computational complexity – Some computers may not have what it takes to run complex algorithms.
  • Ethical considerations – Sourcing training data inevitably triggers privacy and ethical concerns.

Future Trends in Machine Learning Algorithms

If we had a crystal ball, it might say that future of machine learning algorithms looks like this:

  • Integration with other technologies – Machine learning may be harmonized with other technologies to propel space missions and other hi-tech achievements.
  • Development of new algorithms and techniques – As the amount of data grows, expect more algorithms to spring up.
  • Increasing adoption in various industries – Witnessing the efficacy of machine learning in various industries should encourage all other industries to follow in their footsteps.
  • Addressing ethical and social concerns – Machine learning developers may find a way to source information safely without jeopardizing someone’s privacy.

Machine Learning Can Expand Your Horizons

Machine learning algorithms have saved the day for many enterprises. By polishing customer segmentation, strategic decision-making, and security, they’ve allowed countless businesses to thrive.

With more machine learning breakthroughs in the offing, expect the impact of this technology to magnify. So, hit the books and learn more about the subject to prepare for new advancements.

Related posts

Agenda Digitale: The Five Pillars of the Cloud According to NIST – A Compass for Businesses and Public Administrations
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Jun 26, 2025 7 min read

Source:


By Lokesh Vij, Professor of Cloud Computing Infrastructure, Cloud Development, Cloud Computing Automation and Ops and Cloud Data Stacks at OPIT – Open Institute of Technology

NIST identifies five key characteristics of cloud computing: on-demand self-service, network access, resource pooling, elasticity, and metered service. These pillars explain the success of the global cloud market of 912 billion in 2025

In less than twenty years, the cloud has gone from a curiosity to an indispensable infrastructure. According to Precedence Research, the global market will reach 912 billion dollars in 2025 and will exceed 5.1 trillion in 2034. In Europe, the expected spending for 2025 will be almost 202 billion dollars. At the base of this success are five characteristics, identified by the NIST (National Institute of Standards and Technology): on-demand self-service, network access, shared resource pool, elasticity and measured service.

Understanding them means understanding why the cloud is the engine of digital transformation.

On-demand self-service: instant provisioning

The journey through the five pillars starts with the ability to put IT in the hands of users.

Without instant provisioning, the other benefits of the cloud remain potential. Users can turn resources on and off with a click or via API, without tickets or waiting. Provisioning a VM, database, or Kubernetes cluster takes seconds, not weeks, reducing time to market and encouraging continuous experimentation. A DevOps team that releases microservices multiple times a day or a fintech that tests dozens of credit-scoring models in parallel benefit from this immediacy. In OPIT labs, students create complete Kubernetes environments in two minutes, run load tests, and tear them down as soon as they’re done, paying only for the actual minutes.

Similarly, a biomedical research group can temporarily allocate hundreds of GPUs to train a deep-learning model and release them immediately afterwards, without tying up capital in hardware that will age rapidly. This flexibility allows the user to adapt resources to their needs in real time. There are no hard and fast constraints: you can activate a single machine and deactivate it when it is no longer needed, or start dozens of extra instances for a limited time and then release them. You only pay for what you actually use, without waste.

Wide network access: applications that follow the user everywhere

Once access to resources is made instantaneous, it is necessary to ensure that these resources are accessible from any location and device, maintaining a uniform user experience. The cloud lives on the network and guarantees ubiquity and independence from the device.

A web app based on HTTP/S can be used from a laptop, tablet or smartphone, without the user knowing where the containers are running. Geographic transparency allows for multi-channel strategies: you start a purchase on your phone and complete it on your desktop without interruptions. For the PA, this means providing digital identities everywhere, for the private sector, offering 24/7 customer service.

Broad access moves security from the physical perimeter to the digital identity and introduces zero-trust architecture, where every request is authenticated and authorized regardless of the user’s location.

All you need is a network connection to use the resources: from the office, from home or on the move, from computers and mobile devices. Access is independent of the platform used and occurs via standard web protocols and interfaces, ensuring interoperability.

Shared Resource Pools: The Economy of Scale of Multi-Tenancy

Ubiquitous access would be prohibitive without a sustainable economic model. This is where infrastructure sharing comes in.

The cloud provider’s infrastructure aggregates and shares computational resources among multiple users according to a multi-tenant model. The economies of scale of hyperscale data centers reduce costs and emissions, putting cutting-edge technologies within the reach of startups and SMBs.

Pooling centralizes patching, security, and capacity planning, freeing IT teams from repetitive tasks and reducing the company’s carbon footprint. Providers reinvest energy savings in next-generation hardware and immersion cooling research programs, amplifying the collective benefit.

Rapid Elasticity: Scaling at the Speed ​​of Business

Sharing resources is only effective if their allocation follows business demand in real time. With elasticity, the infrastructure expands or reduces resources in minutes following the load. The system behaves like a rubber band: if more power or more instances are needed to deal with a traffic spike, it automatically scales in real time; when demand drops, the additional resources are deactivated just as quickly.

This flexibility seems to offer unlimited resources. In practice, a company no longer has to buy excess servers to cover peaks in demand (which would remain unused during periods of low activity), but can obtain additional capacity from the cloud only when needed. The economic advantage is considerable: large initial investments are avoided and only the capacity actually used during peak periods is paid for.

In the OPIT cloud automation lab, students simulate a streaming platform that creates new Kubernetes pods as viewers increase and deletes them when the audience drops: a concrete example of balancing user experience and cost control. The effect is twofold: the user does not suffer slowdowns and the company avoids tying up capital in underutilized servers.

Metered Service: Transparency and Cost Governance

The dynamic scale generated by elasticity requires precise visibility into consumption and expenses : without measurement there is no governance. Metering makes every second of CPU, every gigabyte and every API call visible. Every consumption parameter is tracked and made available in transparent reports.

This data enables pay-per-use pricing , i.e. charges proportional to actual usage. For the customer, this translates into variable costs: you only pay for the resources actually consumed. Transparency helps you plan your budget: thanks to real-time data, it is easier to optimize expenses, for example by turning off unused resources. This eliminates unnecessary fixed costs, encouraging efficient use of resources.

The systemic value of the five pillars

When the five pillars work together, the effect is multiplier . Self-service and elasticity enable rapid response to workload changes, increasing or decreasing resources in real time, and fuel continuous experimentation; ubiquitous access and pooling provide global scalability; measurement ensures economic and environmental sustainability.

It is no surprise that the Italian market will grow from $12.4 billion in 2025 to $31.7 billion in 2030 with a CAGR of 20.6%. Manufacturers and retailers are migrating mission-critical loads to cloud-native platforms , gaining real-time data insights and reducing time to value .

From the laboratory to the business strategy

From theory to practice: the NIST pillars become a compass for the digital transformation of companies and Public Administration. In the classroom, we start with concrete exercises – such as the stress test of a video platform – to demonstrate the real impact of the five pillars on performance, costs and environmental KPIs.

The same approach can guide CIOs and innovators: if processes, governance and culture embody self-service, ubiquity, pooling, elasticity and measurement, the organization is ready to capture the full value of the cloud. Otherwise, it is necessary to recalibrate the strategy by investing in training, pilot projects and partnerships with providers. The NIST pillars thus confirm themselves not only as a classification model, but as the toolbox with which to build data-driven and sustainable enterprises.

Read the full article below (in Italian):

Read the article
ChatGPT Action Figures & Responsible Artificial Intelligence
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Jun 23, 2025 6 min read

You’ve probably seen two of the most recent popular social media trends. The first is creating and posting your personalized action figure version of yourself, complete with personalized accessories, from a yoga mat to your favorite musical instrument. There is also the Studio Ghibli trend, which creates an image of you in the style of a character from one of the animation studio’s popular films.

Both of these are possible thanks to OpenAI’s GPT-4o-powered image generator. But what are you risking when you upload a picture to generate this kind of content? More than you might imagine, according to Tom Vazdar, chair of cybersecurity at the Open Institute of Technology (OPIT), in a recent interview with Wired. Let’s take a closer look at the risks and how this issue ties into the issue of responsible artificial intelligence.

Uploading Your Image

To get a personalized image of yourself back from ChatGPT, you need to upload an actual photo, or potentially multiple images, and tell ChatGPT what you want. But in addition to using your image to generate content for you, OpenAI could also be using your willingly submitted image to help train its AI model. Vazdar, who is also CEO and AI & Cybersecurity Strategist at Riskoria and a board member for the Croatian AI Association, says that this kind of content is “a gold mine for training generative models,” but you have limited power over how that image is integrated into their training strategy.

Plus, you are uploading much more than just an image of yourself. Vazdar reminds us that we are handing over “an entire bundle of metadata.” This includes the EXIF data attached to the image, such as exactly when and where the photo was taken. And your photo may have more content in it than you imagine, with the background – including people, landmarks, and objects – also able to be tied to that time and place.

In addition to this, OpenAI also collects data about the device that you are using to engage with the platform, and, according to Vazdar, “There’s also behavioral data, such as what you typed, what kind of image you asked for, how you interacted with the interface and the frequency of those actions.”

After all that, OpenAI knows a lot about you, and soon, so could their AI model, because it is studying you.

How OpenAI Uses Your Data

OpenAI claims that they did not orchestrate these social media trends simply to get training data for their AI, and that’s almost certainly true. But they also aren’t denying that access to that freely uploaded data is a bonus. As Vazdar points out, “This trend, whether by design or a convenient opportunity, is providing the company with massive volumes of fresh, high-quality facial data from diverse age groups, ethnicities, and geographies.”

OpenAI isn’t the only company using your data to train its AI. Meta recently updated its privacy policy to allow the company to use your personal information on Meta-related services, such as Facebook, Instagram, and WhatsApp, to train its AI. While it is possible to opt-out, Meta isn’t advertising that fact or making it easy, which means that most users are sharing their data by default.

You can also control what happens with your data when using ChatGPT. Again, while not well publicized, you can use ChatGPT’s self-service tools to access, export, and delete your personal information, and opt out of having your content used to improve OpenAI’s model. Nevertheless, even if you choose these options, it is still worth it to strip data like location and time from images before uploading them and to consider the privacy of any images, including people and objects in the background, before sharing.

Are Data Protection Laws Keeping Up?

OpenAI and Meta need to provide these kinds of opt-outs due to data protection laws, such as GDPR in the EU and the UK. GDPR gives you the right to access or delete your data, and the use of biometric data requires your explicit consent. However, your photo only becomes biometric data when it is processed using a specific technical measure that allows for the unique identification of an individual.

But just because ChatGPT is not using this technology, doesn’t mean that ChatGPT can’t learn a lot about you from your images.

AI and Ethics Concerns

But you might wonder, “Isn’t it a good thing that AI is being trained using a diverse range of photos?” After all, there have been widespread reports in the past of AI struggling to recognize black faces because they have been trained mostly on white faces. Similarly, there have been reports of bias within AI due to the information it receives. Doesn’t sharing from a wide range of users help combat that? Yes, but there is so much more that could be done with that data without your knowledge or consent.

One of the biggest risks is that the data can be manipulated for marketing purposes, not just to get you to buy products, but also potentially to manipulate behavior. Take, for instance, the Cambridge Analytica scandal, which saw AI used to manipulate voters and the proliferation of deepfakes sharing false news.

Vazdar believes that AI should be used to promote human freedom and autonomy, not threaten it. It should be something that benefits humanity in the broadest possible sense, and not just those with the power to develop and profit from AI.

Responsible Artificial Intelligence

OPIT’s Master’s in Responsible AI combines technical expertise with a focus on the ethical implications of AI, diving into questions such as this one. Focusing on real-world applications, the course considers sustainable AI, environmental impact, ethical considerations, and social responsibility.

Completed over three or four 13-week terms, it starts with a foundation in technical artificial intelligence and then moves on to advanced AI applications. Students finish with a Capstone project, which sees them apply what they have learned to real-world problems.

Read the article