Anybody who’s ever given ChatGPT or a similar AI-powered software a whirl has seen machine learning in action. Today, we’re on the cusp of a computational revolution as computer systems are being taught to do more than simply follow processes. They can learn just like humans though they can only do so using algorithms and models designed to show them what to learn and how to draw conclusions.
Those who can master machines, or more accurately, the concepts of building digital brains for machines, stand to enjoy long and lucrative careers. Glassdoor tells us that the average machine learning engineer picks up €70,318 in Germany alone, with senior-level engineers picking up close to €90,000. But to get to the point where you can work in this field, you need a Master’s in machine learning to demonstrate that you know what you’re doing. This article looks at three of the best programs for European and international students.
Factors to Consider When Choosing a Masters in Machine Learning Program
Before we dig into the courses, it’s important to highlight what we’re looking for. After all, a certificate needs to be worth more than the paper on which it’s printed, serving as tangible proof that you have the machine learning chops prospective employers desire.
- University Reputation – A certificate from a university with a bad reputation is like word-of-mouth from a shyster – nobody trusts it. Any institution you choose needs to have a stellar reputation as a provider of high-quality programs.
- Course Curriculum – The general concept of machine learning branches off into many different paths and specializations, each of which takes you in different career directions. By examining the course curriculum, you confirm that your program leads you down the right path rather than being something that’ll force you to course-correct in the future.
- Faculty Expertise – The people who teach you need to have roots in the machine learning sector. Those roots can come from their experience in industry, academic success, or research, but they need to be there if your teachers are to provide the fuel to grow your academic seed.
- Industry Connections – Machine learning already permeates through any industry that relies on data (i.e., almost all of them), so you want a university that offers links to employers. Look for internship programs, lecturers with a history of real-world experience, and careers departments designed to help you get ahead.
- Tuition Fees – There’s no getting around the fact that a Master’s degree in any subject sets you back a few thousand euros. How many thousands depends on the nature of your course and the institution, so look for something that’s affordable and (where applicable) can provide financial aid.
Top Masters in Machine Learning Programs
With what to look for established, it’s time to look at a trio of Master’s in machine learning courses that fit the bill when examined under the lens of the above five factors.
Master of Science in Machine Learning and Data Science (Imperial College London)
Imperial College London has always held a high reputation in the UK (it was a fixture on the old show “University Challenge”) and its Master’s degree courses allow you to piggyback off that reputation. This Master’s is a 24-month program that’s offered 100% online, making it as accessible to international students as it is to English ones.
The program starts you off with theory and ethics, helping you understand the programming techniques and math that go into designing machine learning models. By the second year, you’ll start getting your feet wet with practical projects, develop mastery of unsupervised learning, and take on research projects to show you can apply what you’ve learned. The faculty has wide-ranging experience, led by Professor Michael Bronstein, the university’s Chair of Machine Learning and Pattern Recognition. His expertise has been called upon by the likes of the University of Oxford and Project CETI, meaning you’re in good hands from the course creation and guidance perspectives.
The downside is that this is an expensive course, costing international students £16,200 per year for a total of £32,400 (approx. €37,310 as of time of writing). That’s money well spent, considering you get a degree from a university that ranks sixth in the QS World University Rankings and has an alumni network that stretches to over 200,000 former students and faculty members. Financial assistance for those high tuition fees is available for Imperial’s Student Support Fund and Global Relief Fund, though both are only available to students who face unexpected financial hardship.
Master in Management of AI and Machine Learning (UBI Business School)
From a course focused primarily on theory, we move to one that takes a much more business-centric focus. UBI Business School has five-star ratings across the board from QS University World Rankings and delivers courses that help students harness their knowledge to meet the demands of modern industry.
Creating digital leads is the stated goal of the program, which it highlights through a curriculum developed by some of the world’s leading tech companies. The idea is simple – ask companies what they want and let them design a course that teaches it. First-stage students start with modules focusing on the psychology and ethics behind modern technology. By the second stage, those who choose the AI and machine learning specialization move into the fundamentals of AI, neural networks, and applying Python to large datasets. Finally, this MSc machine learning concludes with a management project, where you’ll complete a thesis and work directly either with an existing business or in the university’s Venture Creation Lab.
Tuition may be a sticking point because you need to pay €11,900 for the course, though you can get a discount if you pay upfront. UBI also offers scholarships based on merit and for special groups (i.e., people with special political associations). International students can also benefit from global inclusion and refugee scholarships designed to make education more accessible. The teaching staff, led by Dean and Professor Gaston Fornes, includes people who have over 15 years of professional experience, five of which are spent in senior leadership roles.
Master in Applied Data Science & AI (OPIT)
Don’t let the lack of the term “machine learning” in the degree’s name fool you – OPIT’s course leans heavily into machine learning. In the first term alone, you’ll learn about feature engineering, different machine learning models, and how to visualize data through Python and relevant coding libraries. But you’ll learn all of that in the context of how machine learning applies in data science, making the program ideal for practical people with one eye turned toward a data science career.
That focus on practicality continues in the second team, where you can study the applications of machine learning more directly. The third (and final) term is your thesis, which is your choice between a research project or an internship with a real-world company. Speaking of associations with companies. OPIT’s team of teachers boasts experience working with some major players, with former Google and Microsoft employees among their numbers. Again, that feeds into the applied approach brought to this Master’s in machine learning as you’ll learn from people who’ve actually applied what they’re teaching you.
Tuition fees are also reasonable for this 18-month course. Most can expect to pay €6,500, though early bird discounts are on offer to bring the price closer to the €5,000 range if you apply several months before the October intake. You can also pay in installments.
Other Notable Masters in Machine Learning Programs
The three courses highlighted above all offer something different, with one being more theory focused, another taking on the business angle, and the third falling somewhere in between. But beyond those three, here are a few more good MSc machine learning universities to consider.
Carnegie Mellon University
As one of the world’s top-ranked AI institutions, Carnegie Mellon is ideal for those who want to study in the United States. Learning from top researchers gives you a solid pedigree that makes you more desirable to employers after your studies.
University of Oxford
The University of Oxford’s low 18% acceptance rate belies its reputation as the UK’s foremost academic institution. Simply having the word “Oxford” on your CV opens doors that other degree programs can’t.
KU Leaven
Don’t let KU Leaven’s reputation as one of the oldest Catholic universities in the world trick you into thinking it’s not the best place for the sciences. It’s a world leader in research, especially in AI and biomedical science fields.
Guide the New Wave of Machines With an MSc Machine Learning Degree
By choosing to pursue a Master’s in machine learning, you’ve put yourself on track for a career that will be lucrative and has the potential for enormous growth as more companies adopt AI. You’re also getting yourself in on (or near) the ground floor of a metaphorical building that’s going to be so high that we may not ever see the top.
The three courses here (plus the universities touched upon at the tail end of the article) offer differing paths into machine learning. But all three give you the same result – an MSc machine learning qualification you can use to build a superb career.
Related posts
Source:
- The Yuan, Published on October 25th, 2024.
By Zorina Alliata
Artificial intelligence is a classic example of a mismatch between perceptions and reality, as people tend to overlook its positive aspects and fear it far more than what is warranted by its actual capabilities, argues AI strategist and professor Zorina Alliata.
ALEXANDRIA, VIRGINIA – In recent years, artificial intelligence (AI) has grown and developed into something much bigger than most people could have ever expected. Jokes about robots living among humans no longer seem so harmless, and the average person began to develop a new awareness of AI and all its uses. Unfortunately, however – as is often a human tendency – people became hyper-fixated on the negative aspects of AI, often forgetting about all the good it can do. One should therefore take a step back and remember that humanity is still only in the very early stages of developing real intelligence outside of the human brain, and so at this point AI is almost like a small child that humans are raising.
AI is still developing, growing, and adapting, and like any new tech it has its drawbacks. At one point, people had fears and doubts about electricity, calculators, and mobile phones – but now these have become ubiquitous aspects of everyday life, and it is not difficult to imagine a future in which this is the case for AI as well.
The development of AI certainly comes with relevant and real concerns that must be addressed – such as its controversial role in education, the potential job losses it might lead to, and its bias and inaccuracies. For every fear, however, there is also a ray of hope, and that is largely thanks to people and their ingenuity.
Looking at education, many educators around the world are worried about recent developments in AI. The frequently discussed ChatGPT – which is now on its fourth version – is a major red flag for many, causing concerns around plagiarism and creating fears that it will lead to the end of writing as people know it. This is one of the main factors that has increased the pessimistic reporting about AI that one so often sees in the media.
However, when one actually considers ChatGPT in its current state, it is safe to say that these fears are probably overblown. Can ChatGPT really replace the human mind, which is capable of so much that AI cannot replicate? As for educators, instead of assuming that all their students will want to cheat, they should instead consider the options for taking advantage of new tech to enhance the learning experience. Most people now know the tell-tale signs for identifying something that ChatGPT has written. Excessive use of numbered lists, repetitive language and poor comparison skills are just three ways to tell if a piece of writing is legitimate or if a bot is behind it. This author personally encourages the use of AI in the classes I teach. This is because it is better for students to understand what AI can do and how to use it as a tool in their learning instead of avoiding and fearing it, or being discouraged from using it no matter the circumstances.
Educators should therefore reframe the idea of ChatGPT in their minds, have open discussions with students about its uses, and help them understand that it is actually just another tool to help them learn more efficiently – and not a replacement for their own thoughts and words. Such frank discussions help students develop their critical thinking skills and start understanding their own influence on ChatGPT and other AI-powered tools.
By developing one’s understanding of AI’s actual capabilities, one can begin to understand its uses in everyday life. Some would have people believe that this means countless jobs will inevitably become obsolete, but that is not entirely true. Even if AI does replace some jobs, it will still need industry experts to guide it, meaning that entirely new jobs are being created at the same time as some older jobs are disappearing.
Adapting to AI is a new challenge for most industries, and it is certainly daunting at times. The reality, however, is that AI is not here to steal people’s jobs. If anything, it will change the nature of some jobs and may even improve them by making human workers more efficient and productive. If AI is to be a truly useful tool, it will still need humans. One should remember that humans working alongside AI and using it as a tool is key, because in most cases AI cannot do the job of a person by itself.
Is AI biased?
Why should one view AI as a tool and not a replacement? The main reason is because AI itself is still learning, and AI-powered tools such as ChatGPT do not understand bias. As a result, whenever ChatGPT is asked a question it will pull information from anywhere, and so it can easily repeat old biases. AI is learning from previous data, much of which is biased or out of date. Data about home ownership and mortgages, e.g., are often biased because non-white people in the United States could not get a mortgage until after the 1960s. The effect on data due to this lending discrimination is only now being fully understood.
AI is certainly biased at times, but that stems from human bias. Again, this just reinforces the need for humans to be in control of AI. AI is like a young child in that it is still absorbing what is happening around it. People must therefore not fear it, but instead guide it in the right direction.
For AI to be used as a tool, it must be treated as such. If one wanted to build a house, one would not expect one’s tools to be able to do the job alone – and AI must be viewed through a similar lens. By acknowledging this aspect of AI and taking control of humans’ role in its development, the world would be better placed to reap the benefits and quash the fears associated with AI. One should therefore not assume that all the doom and gloom one reads about AI is exactly as it seems. Instead, people should try experimenting with it and learning from it, and maybe soon they will realize that it was the best thing that could have happened to humanity.
Read the full article below:
Source:
- The European Business Review, Published on October 27th, 2024.
By Lokesh Vij
Lokesh Vij is a Professor of BSc in Modern Computer Science & MSc in Applied Data Science & AI at Open Institute of Technology. With over 20 years of experience in cloud computing infrastructure, cybersecurity and cloud development, Professor Vij is an expert in all things related to data and modern computer science.
In today’s rapidly evolving technological landscape, the fields of blockchain and cloud computing are transforming industries, from finance to healthcare, and creating new opportunities for innovation. Integrating these technologies into education is not merely a trend but a necessity to equip students with the skills they need to thrive in the future workforce. Though both technologies are independently powerful, their potential for innovation and disruption is amplified when combined. This article explores the pressing questions surrounding the inclusion of blockchain and cloud computing in education, providing a comprehensive overview of their significance, benefits, and challenges.
The Technological Edge and Future Outlook
Cloud computing has revolutionized how businesses and individuals’ access and manage data and applications. Benefits like scalability, cost efficiency (including eliminating capital expenditure – CapEx), rapid innovation, and experimentation enable businesses to develop and deploy new applications and services quickly without the constraints of traditional on-premises infrastructure – thanks to managed services where cloud providers manage the operating system, runtime, and middleware, allowing businesses to focus on development and innovation. According to Statista, the cloud computing market is projected to reach a significant size of Euro 250 billion or even higher by 2028 (from Euro 110 billion in 2024), with a substantial Compound Annual Growth Rate (CAGR) of 22.78%. The widespread adoption of cloud computing by businesses of all sizes, coupled with the increasing demand for cloud-based services and applications, fuels the need for cloud computing professionals.
Blockchain, a distributed ledger technology, has paved the way by providing a secure, transparent, and tamper-proof way to record transactions (highly resistant to hacking and fraud). In 2021, European blockchain startups raised $1.5 billion in funding, indicating strong interest and growth potential. Reports suggest the European blockchain market could reach $39 billion by 2026, with a significant CAGR of over 47%. This growth is fueled by increasing adoption in sectors like finance, supply chain, and healthcare.
Addressing the Skills Gap
Reports from the World Economic Forum indicate that 85 million jobs may be displaced by a shift in the division of labor between humans and machines by 2025. However, 97 million new roles may emerge that are more adapted to the new division of labor between humans, machines, and algorithms, many of which will require proficiency in cloud computing and blockchain.
Furthermore, the World Economic Forum predicts that by 2027, 10% of the global GDP will be tokenized and stored on the blockchain. This massive shift means a surge in demand for blockchain professionals across various industries. Consider the implications of 10% of the global GDP being on the blockchain: it translates to a massive need for people who can build, secure, and manage these systems. We’re talking about potentially millions of jobs worldwide.
The European Blockchain Services Infrastructure (EBSI), an EU initiative, aims to deploy cross-border blockchain services across Europe, focusing on areas like digital identity, trusted data sharing, and diploma management. The EU’s MiCA (Crypto-Asset Regulation) regulation, expected to be fully implemented by 2025, will provide a clear legal framework for crypto-assets, fostering innovation and investment in the blockchain space. The projected growth and supportive regulatory environment point to a rising demand for blockchain professionals in Europe. Developing skills related to EBSI and its applications could be highly advantageous, given its potential impact on public sector blockchain adoption. Understanding the MiCA regulation will be crucial for blockchain roles related to crypto-assets and decentralized finance (DeFi).
Furthermore, European businesses are rapidly adopting digital technologies, with cloud computing as a core component of this transformation. GDPR (Data Protection Regulations) and other data protection laws push businesses to adopt secure and compliant cloud solutions. Many European countries invest heavily in cloud infrastructure and promote cloud adoption across various sectors. Artificial intelligence and machine learning will be deeply integrated into cloud platforms, enabling smarter automation, advanced analytics, and more efficient operations. This allows developers to focus on building applications without managing servers, leading to faster development cycles and increased scalability. Processing data closer to the source (like on devices or local servers) will become crucial for applications requiring real-time responses, such as IoT and autonomous vehicles.
The projected growth indicates a strong and continuous demand for blockchain and cloud professionals in Europe and worldwide. As we stand at the “crossroads of infinity,” there is a significant skill shortage, which will likely increase with the rapid adoption of these technologies. A 2023 study by SoftwareOne found that 95% of businesses globally face a cloud skills gap. Specific skills in high demand include cloud security, cloud-native development, and expertise in leading cloud platforms like AWS, Azure, and Google Cloud. The European Commission’s Digital Economy and Society Index (DESI) highlights a need for improved digital skills in areas like blockchain to support the EU’s digital transformation goals. A 2023 report by CasperLabs found that 90% of businesses in the US, UK, and China adopt blockchain, but knowledge gaps and interoperability challenges persist.
The Role of Educational Institutions
This surge in demand necessitates a corresponding increase in qualified individuals who can design, implement, and manage cloud-based and blockchain solutions. Educational institutions have a critical role to play in bridging this widening skills gap and ensuring a pipeline of talent ready to meet the demands of this burgeoning industry.
To effectively prepare the next generation of cloud computing and blockchain experts, educational institutions need to adopt a multi-pronged approach. This includes enhancing curricula with specialized programs, integrating cloud and blockchain concepts into existing courses, and providing hands-on experience with leading technology platforms.
Furthermore, investing in faculty development to ensure they possess up-to-date knowledge and expertise is crucial. Collaboration with industry partners through internships, co-teach programs, joint research projects, and mentorship programs can provide students with invaluable real-world experience and insights.
Beyond formal education, fostering a culture of lifelong learning is essential. Offering continuing education courses, boot camps, and online resources enables professionals to upskill or reskill and stay abreast of the latest advancements in cloud computing. Actively promoting awareness of career paths and opportunities in this field and facilitating connections with potential employers can empower students to thrive in the dynamic and evolving landscape of cloud computing and blockchain technologies.
By taking these steps, educational institutions can effectively prepare the young generation to fill the skills gap and thrive in the rapidly evolving world of cloud computing and blockchain.
Read the full article below:
Have questions?
Visit our FAQ page or get in touch with us!
Write us at +39 335 576 0263
Get in touch at hello@opit.com
Talk to one of our Study Advisors
We are international
We can speak in: