As computing technology evolved and the concept of linking multiple computers together into a “network” that could share data came into being, it was clear that a model was needed to define and enable those connections. Enter the OSI model in computer network idea.


This model allows various devices and software to “communicate” with one another by creating a set of universal rules and functions. Let’s dig into what the model entails.


History of the OSI Model


In the late 1970s, the continued development of computerized technology saw many companies start to introduce their own systems. These systems stood alone from others. For example, a computer at Retailer A has no way to communicate with a computer at Retailer B, with neither computer being able to communicate with the various vendors and other organizations within the retail supply chain.


Clearly, some way of connecting these standalone systems was needed, leading to researchers from France, the U.S., and the U.K. splitting into two groups – The International Organization for Standardization and the International Telegraph and Telephone Consultive Committee.


In 1983, these two groups merged their work to create “The Basic Reference Model for Open Systems Interconnection (OSI).” This model established industry standards for communication between networked devices, though the path to OSI’s implementation wasn’t as clear as it could have been. The 1980s and 1990s saw the introduction of another model – The TCP IP model – which competed against the OSI model for supremacy. TCP/IP gained so much traction that it became the cornerstone model for the then-budding internet, leading to the OSI model in computer network applications falling out of favor in many sectors. Despite this, the OSI model is still a valuable reference point for students who want to learn more about networking and still have some practical uses in industry.


The OSI Reference Model


The OSI model works by splitting the concept of computers communicating with one another into seven computer network layers (defined below), each offering standardized rules for its specific function. During the rise of the OSI model, these layers worked in concert, allowing systems to communicate as long as they followed the rules.


Though the OSI model in computer network applications has fallen out of favor on a practical level, it still offers several benefits:


  • The OSI model is perfect for teaching network architecture because it defines how computers communicate.
  • OSI is a layered model, with separation between each layer, so one layer doesn’t affect the operation of any other.
  • The OSI model offers flexibility because of the distinctions it makes between layers, with users being able to replace protocols in any layer without worrying about how they’ll impact the other layers.

The 7 Layers of the OSI Model


The OSI reference model in computer network teaching is a lot like an onion. It has several layers, each standing alone but each needing to be peeled back to get a result. But where peeling back the layers of an onion gets you a tasty ingredient or treat, peeling them back in the OSI model delivers a better understanding of networking and the protocols that lie behind it.


Each of these seven layers serves a different function.


Layer 1: Physical Layer


Sitting at the lowest level of the OSI model, the physical layer is all about the hows and wherefores of transmitting electrical signals from one device to another. Think of it as the protocols needed for the pins, cables, voltages, and every other component of a physical device if said device wants to communicate with another that uses the OSI model.


Layer 2: Data Link Layer


With the physical layer in place, the challenge shifts to transmitting data between devices. The data layer defines how node-to-node transfer occurs, allowing for the packaging of data into “frames” and the correction of errors that may happen in the physical layer.


The data layer has two “sub-layers” of its own:


  • MAC – Media Access Controls that offer multiplexing and flow control to govern a device’s transmissions over an OSI network.
  • LLC – Logical Link Controls that offer error control over the physical media (i.e., the devices) used to transmit data across a connection.

Layer 3: Network Layer


The network layer is like an intermediary between devices, as it accepts “frames” from the data layer and sends them on their way to their intended destination. Think of this layer as the postal service of the OSI model in computer network applications.



Layer 4: Transport Layer


If the network layer is a delivery person, the transport layer is the van that the delivery person uses to carry their parcels (i.e., data packets) between addresses. This layer regulates the sequencing, sizing, and transferring of data between hosts and systems. TCP (Transmission Control Protocol) is a good example of a transport layer in practical applications.


Layer 5: Session Layer


When one device wants to communicate with another, it sets up a “session” in which the communication takes place, similar to how your boss may schedule a meeting with you when they want to talk. The session layer regulates how the connections between machines are set up and managed, in addition to providing authorization controls to ensure no unwanted devices can interrupt or “listen in” on the session.


Layer 6: Presentation Layer


Presentation matters when sending data from one system to another. The presentation layer “pretties up” data by formatting and translating it into a syntax that the recipient’s application accepts. Encryption and decryption is a perfect example, as a data packet can be encrypted to be unreadable to anybody who intercepts it, only to be decrypted via the presentation layer so the intended recipient can see what the data packet contains.


Layer 7: Application Layer


The application layer is a front end through which the end user can interact with everything that’s going on behind the scenes in the network. It’s usually a piece of software that puts a user-friendly face on a network. For instance, the Google Chrome web browser is an application layer for the entire network of connections that make up the internet.


Interactions Between OSI Layers


Though each of the OSI layers in computer networks is independent (lending to the flexibility mentioned earlier), they must also interact with one another to make the network functional.


We see this most obviously in the data encapsulation and de-encapsulation that occurs in the model. Encapsulation is the process of adding information to a data packet as it travels, with de-encapsulation being the method used to remove that data added data so the end user can read what was originally sent. The previously mentioned encryption and decryption of data is a good example.


That process of encapsulation and de-encapsulation defines how the OSI model works. Each layer adds its own little “flavor” to the transmitted data packet, with each subsequent layer either adding something new or de-encapsulating something previously added so it can read the data. Each of these additions and subtractions is governed by the protocols set within each layer. A perfect network can only exist if these protocols properly govern data transmission, allowing for communication between each layer.


Real-World Applications of the OSI Model


There’s a reason why the OSI model in computer network study is often called a “reference” model – though important, it was quickly replaced with other models. As a result, you’ll rarely see the OSI model used as a way to connect devices, with TCP/IP being far more popular. Still, there are several practical applications for the OSI model.


Network Troubleshooting and Diagnostics


Given that some modern computer networks are unfathomably complex, picking out a single error that messes up the whole communication process can feel like navigating a minefield. Every wrong step causes something else to blow up, leading to more problems than you solve. The OSI model’s layered approach offers a way to break down the different aspects of a network to make it easier to identify problems.


Network Design and Implementation


Though the OSI model has few practical purposes, as a theoretical model it’s often seen as the basis for all networking concepts that came after. That makes it an ideal teaching tool for showcasing how networks are designed and implemented. Some even refer to the model when creating networks using other models, with the layered approach helping understand complex networks.


Enhancing Network Security


The concept of encapsulation and de-encapsulation comes to the fore again here (remember – encryption), as this concept shows us that it’s dangerous to allow a data packet to move through a network with no interactions. The OSI model shows how altering that packet as it goes on its journey makes it easier to protect data from unwanted eyes.



Limitations and Criticisms of the OSI Model


Despite its many uses as a teaching tool, the OSI model in computer network has limitations that are the reasons why it sees few practical applications:


  • Complexity – As valuable as the layered approach may be to teaching networks, it’s often too complex to execute in practice.
  • Overlap – The very flexibility that makes OSI great for people who want more control over their networks can come back to bite the model. The failure to implement proper controls and protocols can lead to overlap, as can the layered approach itself. Each of the computer network layers needs the others to work.
  • The Existence of Alternatives – The OSI model walked so other models could run, establishing many fundamental networking concepts that other models executed better in practical terms. Again, the massive network known as the internet is a great example, as it uses the TCP/IP model to reduce complexity and more effectively transmit data.

Use the OSI Reference Model in Computer Network Applications


Though it has little practical application in today’s world, the OSI model in computer network terms is a theoretical model that played a crucial role in establishing many of the “rules” of networking still used today. Its importance is still recognized by the fact that many computing courses use the OSI model to teach the fundamentals of networks.


Think of learning about the OSI model as being similar to laying the foundations for a house. You’ll get to grips with the basic concepts of how networks work, allowing you to build up your knowledge by incorporating both current networking technology and future advancements to become a networking specialist.

Related posts

The Path to Education Is Not Always Straightforward
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Dec 17, 2025 6 min read

Life is unpredictable. While many of us have specific hopes and expectations of how our futures will turn out, things don’t always go as expected. There are many variables and unexpected incidents that can interfere and force you to alter your plans, and this is particularly true when it comes to education.

For instance, you might have had plans to study a specific subject, but had to deviate from those plans due to unforeseen circumstances. Or you may have had to enter the workforce in an occupation different from the one you sought in an effort to earn an income, a move that may not provide you with the time or opportunity to achieve your desired educational aims.

In short, every individual’s career pathway is different, and very few go exactly as we expect from the outset. Fortunately, even if you experience a few false starts or sudden twists in your pathway, there are always options available to help you get back on track.

The Unpredictable Nature of Education

In theory, the educational process seems simple. You select a course of study that interests you from the vast array of subjects and prospective professions, select the appropriate classes, acquire the knowledge and skills you need to succeed, and then embark on your profession.

In reality, however, as many people know from firsthand experience, the road to education is often far from straightforward. Here are just some of the many challenges that can take your educational path in a completely different direction:

  • Life’s Curveballs: As touched on in the introduction, life is impossible to predict. Financial hardships, health issues, and family emergencies are just some of the unfortunate occurrences that might derail even the most perfectly planned educational regime.
  • Changing Interests: People’s desires and preferences don’t necessarily stay the same throughout their entire lives. As you grow, learn, and have new experiences, your interests may change, and so, too, may your educational objectives.
  • Pressure and Burnout: Some academic paths are particularly challenging, demanding intense levels of study and hard work. This can sometimes prove too much to bear, even for the most resilient students.
  • Failures and Setbacks: Conventional education largely builds around tests and examinations, requiring students to demonstrate their competencies repeatedly. It’s a system that doesn’t suit everyone, and test failures can lead to setbacks and delays.
  • Inequality: People can be born with very different privileges and levels of access to education. Those in certain parts of the world may find it much more challenging to complete their education path for financial, cultural, or even political reasons.
  • Late Bloomers: People develop at different paces. Some may struggle educationally early on in their lives, forcing them to make certain concessions or sacrifices related to their studies, only to find their feet later in life once they’ve entered the world of work.

Whether you’re a late bloomer, have had your educational aspirations delayed by personal problems, desire to learn new skills and try something different, or want to begin a fresh chapter in your professional life, the Open Institute of Technology (OPIT) may be able to help.

Introducing OPIT

OPIT is an online teaching platform, making high-level technological educational programs accessible to all, no matter their age or background. Offering education in fields like computer science, artificial intelligence, and digital business, OPIT provides a curated collection of degrees. In addition, they offer classes taught by world-leading tutors imparting the wisdom and skills students need to achieve their goals and become the tech leaders of tomorrow.

Meanwhile, for those who have had somewhat tumultuous or unpredictable educational paths, OPIT offers the perfect course corrector: the OPIT Foundation Year.

The OPIT Foundation Year

OPIT’s Foundation Year is a Pre-Tertiary Certificate in Information Technology, fully aligned with MQF/EQF Level 4 standards and valued at 60 ECTS credits. Lasting just one year, this program essentially serves as a comprehensive yet accessible springboard towards higher-level education, creating a path towards degrees and careers in dynamic, flexible fields, like computer science and digital business.

Like other OPIT programs, the Foundation Year is delivered entirely online via the OPIT Virtual Learning Environment. Combining live lectures, asynchronous content, and interactive assessments, students enjoy diverse and dynamic study experiences, acquiring core skills like academic writing, mathematics, and computer literacy, and building a bedrock of knowledge and confidence before taking their next steps.

Who Is the Foundation Program For?

The Foundation Program is designed to provide a solid base upon which to build the technological education many students need. It’s the perfect choice for those who are eager and ambitious to enter professions in AI, data science, and computing, but don’t feel that they have the necessary core skills and knowledge needed to dive straight into a degree.

Entry requirements are relatively relaxed in order to allow as many students as possible to enjoy the benefits of this program. With that said, applicants should ideally hold an MQF/EQF Level 3 or equivalent qualification, with the intention of pursuing a bachelor’s degree. A minimum of B2 level of English proficiency is also required, as this is the working and studying language of the institution.

What the Foundation Year Provides

Perhaps you’ve recently graduated, are considering a career change, or finally have the opportunity to return to education after initial delays or unexpected disruptions to your original plans. Either way, the Foundation Year can help you enjoy:

  • Greater Self-Confidence: Foundation Year graduates gain the fundamental skills they need to enter degree programs with much more self-belief and assuredness.
  • Superior Tech Knowledge: Lasting two terms, this course explores mathematics, academic reading and writing, and provides an introduction to computer hardware and software.
  • Foundational Mathematics: Mathematics literacy forms a large part of the study focus for the Foundation Year, helping students feel more comfortable with numbers and formulas.
  • Flexible Learning: Unlike more rigid, conventional education environments, OPIT gives you the freedom and flexibility to study at a pace that suits you best, all from the comfort of home.
  • Global Community: OPIT is an international institution, with staff and students from all around the world eager to share knowledge, exchange ideas, and help one another.

Take Your Next Steps to Success With the OPIT Foundation Year

If you’re curious about a career in technology or have always wanted to work with AI, data, and computers, but struggled to find the time and opportunities you need to acquire relevant skills and knowledge, the Foundation Program was made for people like you.

It’s the ideal entry point into the exciting world of online education, and the perfect first step towards a prestigious degree from an innovative and increasingly successful institution. Download the brochure to learn more about it, or start your online application, today.

Read the article
Benefits of Doing a Career in Computer Science
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Dec 17, 2025 6 min read

Students today have a broader range of fields of study to choose from than ever before, but with the world becoming increasingly technological and computers increasing in influence and importance, pursuing a career in computer science often proves a smart, strategic choice.

There are numerous benefits and career paths associated with studying and working in computer science, and we’ll be listing just a few of them in this guide.

High Average Salaries

With the rising cost of living in many parts of the world, it’s unsurprising that many students are thinking several decades ahead to determine what level of starting salaries they could obtain in different career fields.

Many are also seeking professions that offer the opportunity for growth and the ability to advance up the ranks over time, thus increasing their salary and their quality of life in the process.

If a strong, stable salary with the opportunity for improved income is one of your top career priorities, computer science should be at or near the top of your list of prospective careers.

According to recent data, computer scientists earn an average of over €65,000 per year, with certain jobs, like IT project leader and data scientist, paying ever higher. Starting salaries are strong, too, with graduates earning anywhere from €46,000 to €60,000, depending on their chosen profession and level of qualifications.

There are similarly high average salaries reported around the world in computer science and related fields such as data science and AI/ML engineering. These numbers are projected to increase in the years to come, pointing to computer science as a way for graduates to get off to the best financial start of any career.

Unrivaled Flexibility

A common problem with some subjects and courses is that they only provide graduates with a narrow set of skills and a similarly narrow range of potential professions to which they can apply those skills.

That’s not the case with computer science. Graduates in this field can enjoy instant access to a remarkably diverse array of career opportunities, with even newer opportunities being created all the time as technology evolves and innovations emerge.

A few of the many industries and roles you might choose to enter in the field of computer science include:

  • Healthcare: As a software developer, data analyst, or cybersecurity expert
  • Finance: As a fintech engineer, blockchain developer, or security analyst
  • Media: As a graphics programmer, AI developer, or game developer
  • Education: As an analyst, software developer, or machine learning engineer

Guaranteed Opportunities

Some career paths are more limited than others, with relatively low numbers of opportunities, recurring risks of job loss, or difficulty obtaining employment in the first place.

Again, with computer science, this simply isn’t the case. At a time when 75% of companies plan to embrace AI and other technologies by 2027, and businesses of all sizes and industries are now relying on computers more than ever before, computer science graduates can enjoy almost unbeatable job security.

Opportunities will continue to grow for people with good computing knowledge, whether that be in the obvious fields like software and web development, engineering, and AI development, or more niche sectors.

With so many options, you’re effectively guaranteed a long, rewarding career if you put in the necessary time and effort needed to establish a strong foundation of computing skills.

Rapidly Expanding and Evolving Industries

It’s no secret that the world of technology is a dynamic and fast-moving one. In the past 20 years alone, we’ve seen the proliferation of the internet, the rapid advancement of smartphones and wearable devices, the emergence of AI, and so much more.

In the years ahead, engineers and developers will continue to explore the boundaries of modern technology’s powers and potential, driving new innovations and improvements and opening more exciting job opportunities for those already established and experienced in this field.

Getting into computer science now could therefore provide a solid foundation for a career filled with excitement as you uncover and explore new ways of working with computers in fields as diverse as healthcare, finance, education, entertainment, manufacturing, logistics, and beyond.

Start Your Computer Science Career at OPIT

We’ve discussed some of the many benefits associated with careers in computer science, from the high starting salaries to the rapidly growing array of job options available to graduates. By now, you may be eager to follow this particular career path and take advantage of the wealth of opportunities.

If you’re wondering how to start, the Open Institute of Technology (OPIT) may hold the answers you need. As an exclusively online learning platform, specializing in computer science and digital business, and staffed by some of the world’s leading tech experts, OPIT is producing the tech leaders of tomorrow.

Some of the many advantages of learning with OPIT include:

  • Accessible and flexible online education that matches your learning style and schedule
  • Heavy focus on real-world applications of the skills you acquire
  • An international community of like-minded students from around the globe
  • A top team of tutors and lecturers from varying fields and industries
  • Progressive assessment of skills and understanding – not constant exams

OPIT offers a small, curated selection of courses for those seeking to gain the technological skills and knowledge to succeed in their chosen areas of expertise. That includes a BSc (Hons) in Computer Science – a six-term program, worth 180 ECTS credits.

Numerous IT industry leaders and experts helped develop this fully accredited undergraduate degree, which is online and accessible to all. Like other OPIT courses, it offers a flexible learning program, with progressive assessments, fast-track options, and the opportunity to be part of a growing community of learners and tutors.

If the benefits of doing a career in computer science interest you, download the OPIT BSc in Computer Science brochure or fill out an online application today and take your first step toward a rewarding and fulfilling profession.

Read the article