It’s hard to find a person who uses the internet but doesn’t enjoy at least one cloud computing service. “Cloud computing” sounds complex, but it’s actually all around you. The term encompasses every tool, app, and service that’s delivered via the internet.


The two popular examples are Dropbox and Google Drive. These cloud-based storage spaces allow you to keep your files at arm’s reach and access them in a few clicks. Zoom is also a cloud-based service – it makes communication a breeze.


Cloud computing can be classified into four types: public, private, hybrid, and community. These four types belong to one of the three cloud computing service models: infrastructure as a service, platform as a service, or software as a service.


It’s time to don a detective cap and explore the mystery hidden behind cloud computing.


Cloud Computing Deployment Models


  • Public cloud
  • Private cloud
  • Hybrid cloud
  • Community cloud

Public Cloud


The “public” in public cloud means anyone who wants to use that service can get it. Public clouds are easy to access and usually have a “general” purpose many can benefit from.


It’s important to mention that with public clouds, the infrastructure is owned by the service provider, not by consumers. This means you can’t “purchase” a public cloud service forever.


Advantages of Public Cloud


  • Cost-effectiveness – Some public clouds are free. Those that aren’t free typically have a reasonable fee.
  • Scalability – Public clouds are accommodating to changing demands. Depending on the cloud’s nature, you can easily add or remove users, upgrade plans, or manipulate storage space.
  • Flexibility – Public clouds are suitable for many things, from storing a few files temporarily to backing up an entire company’s records.

Disadvantages of Public Cloud


  • Security concerns – Since anyone can access public clouds, you can’t be sure your data is 100% safe.
  • Limited customization – While public clouds offer many options, they don’t really allow you to tailor the environment to match your preferences. They’re made to suit broad masses, not particular individuals.

Examples of Public Cloud Providers


  • Amazon Web Services (AWS)
  • Microsoft Azure
  • Google Cloud Platform

Private Cloud


If you’re looking for the complete opposite of public clouds, you’ve found it. Private clouds aren’t designed to fit general criteria. Instead, they’re made to please a single user. Some of the perks private clouds offer are exclusive access, exceptional security, and unmatched customization.


A private cloud is like a single-tenant building. The tenant owns the building and has complete control to do whatever they want. They can tear down walls, drill holes to hang pictures, paint the rooms, install tiles, and get new furniture. When needs change, the tenant can redecorate, no questions asked.


Advantages of Private Cloud


  • Enhanced security – The company’s IT department oversees private clouds. They’re usually protected by powerful firewalls and protocols that minimize the risk of information breaches.
  • Greater control and customization – Since private clouds are one-on-one environments, you can match them to your needs.
  • Improved performance – Private clouds can have functions that suit your organization to the letter, resulting in high performance.

Disadvantages of Private Cloud


  • Higher costs – The exclusive access and customization come at a cost (literally).
  • Limited scalability – You can scale private clouds, but only up to a certain point.

Examples of Private Cloud Providers


  • VMware
  • IBM Cloud
  • Dell EMC

Hybrid Cloud


Public and private clouds have a few important drawbacks that may be deal-breakers for some people. You may want to use public clouds but aren’t ready to compromise on security. On the other hand, you may want the perks that come with private clouds but aren’t happy with limited scalability.


That’s when hybrid clouds come into play because they let you get the best of both worlds. They’re the perfect mix of public and private clouds and offer their best features. You can get the affordability of public clouds and the security of private clouds.


Advantages of Hybrid Cloud


  • Flexibility and scalability – Hybrid clouds are personalized environments, meaning you can adjust them to meet your specific needs. If your needs change, hybrid clouds can keep up.
  • Security and compliance – You don’t have to worry about data breaches or intruders with hybrid clouds. They use state-of-the-art measures to guarantee safety, privacy, and security.
  • Cost optimization – Hybrid clouds are much more affordable than private ones. You’ll need to pay extra only if you want special features.

Disadvantages of Hybrid Cloud


  • Complexity in management – Since they combine public and private clouds, hybrid clouds are complex systems that aren’t really easy to manage.
  • Potential security risks – Hybrid clouds aren’t as secure as private clouds.

Examples of Hybrid Cloud Providers


  • Microsoft Azure Stack
  • AWS Outputs
  • Google Anthos

Community Cloud


Community clouds are shared by more than one organization. The organizations themselves manage them or a third party. In terms of security, community clouds fall somewhere between private and public clouds. The same goes for their price.


Advantages of Community Cloud


  • Shared resources and costs – A community cloud is like a common virtual space for several organizations. By sharing the space, the organizations also share costs and resources.
  • Enhanced security and compliance – Community clouds are more secure than public clouds.
  • Collaboration opportunities – Cloud sharing often encourages organizations to collaborate on different projects.

Disadvantages of Community Cloud


  • Limited scalability – Community clouds are scalable, but only to a certain point.
  • Dependency on other organizations – As much as sharing a cloud with another organization(s) sounds exciting (and cost-effective), it means you’ll depend on them.

Examples of Community Cloud Providers


  • Salesforce Community Cloud
  • Rackspace
  • IBM Cloud for Government

Cloud Computing Service Models


There are three types of cloud computing service models:


  • Infrastructure as a Service (IaaS)
  • Platform as a Service (PaaS)
  • Software as a Service (SaaS)

IaaS


IaaS is a type of pay-as-you-go, third-party service. In this case, the provider gives you an opportunity to enjoy infrastructure services for your networking equipment, databases, devices, etc. You can get services like virtualization and storage and build a strong IT platform with exceptional security.


IaaS models give you the flexibility to create an environment that suits your organization. Plus, they allow remote access and cost-effectiveness.


What about their drawbacks? The biggest issue could be security, especially in multi-tenant ecosystems. You can mitigate security risks by opting for a reputable provider like AWS or Microsoft (Azure).


PaaS


Here, the provider doesn’t deliver the entire infrastructure to a user. Instead, it hosts software and hardware on its own infrastructure, delivering only the “finished product.” The user enjoys this through a platform, which can exist in the form of a solution stack, integrated solution, or an internet-dependent service.


Programmers and developers are among the biggest fans of PaaS. This service model enables them to work on apps and programs without dealing with maintaining complex infrastructures. An important advantage of PaaS is accessibility – users can enjoy it through their web browser.


As far as disadvantages go, the lack of customizability may be a big one. Since you don’t have control over the infrastructure, you can’t really make adjustments to suit your needs. Another potential drawback is that PaaS depends on the provider, so if they’re experiencing problems, you could too.


Some examples of PaaS are Heroku and AWS Elastic Beanstalk.


SaaS


Last but not least is SaaS. Thanks to this computing service model, users can access different software apps using the internet. SaaS is the holy grail for small businesses that don’t have the budget, bandwidth, workforce, or will to install and maintain software. Instead, they leave this work to the providers and enjoy only the “fun” parts.


The biggest advantage of SaaS is that it allows easy access to apps from anywhere. You’ll have no trouble using SaaS as long as you have internet. Plus, it saves a lot of money and time.


Nothing’s perfect, and SaaS is no exception. If you want to use SaaS without interruptions, you need to have a stable internet connection. Plus, with SaaS, you don’t have as much control over the software’s performance and security. Therefore, you need to decide on your priorities. SaaS may not be the best option if you want a highly-customizable environment with exceptional security.


The most popular examples of SaaS are Dropbox, Google Apps, and Salesforce.



Sit on the Right Cloud


Are high security and appealing customization features your priority? Or are you on the hunt for a cost-effective solution? Your answers can indicate which cloud deployment model you should choose.


It’s important to understand that models are not divided into “good” and “bad.” Each has unique characteristics that can be beneficial and detrimental at the same time. If you don’t know how to employ a particular model, you won’t be able to reap its benefits.

Related posts

The Yuan: AI is childlike in its capabilities, so why do so many people fear it?
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Nov 8, 2024 6 min read

Source:

  • The Yuan, Published on October 25th, 2024.

By Zorina Alliata

Artificial intelligence is a classic example of a mismatch between perceptions and reality, as people tend to overlook its positive aspects and fear it far more than what is warranted by its actual capabilities, argues AI strategist and professor Zorina Alliata.

ALEXANDRIA, VIRGINIA – In recent years, artificial intelligence (AI) has grown and developed into something much bigger than most people could have ever expected. Jokes about robots living among humans no longer seem so harmless, and the average person began to develop a new awareness of AI and all its uses. Unfortunately, however – as is often a human tendency – people became hyper-fixated on the negative aspects of AI, often forgetting about all the good it can do. One should therefore take a step back and remember that humanity is still only in the very early stages of developing real intelligence outside of the human brain, and so at this point AI is almost like a small child that humans are raising.

AI is still developing, growing, and adapting, and like any new tech it has its drawbacks. At one point, people had fears and doubts about electricity, calculators, and mobile phones – but now these have become ubiquitous aspects of everyday life, and it is not difficult to imagine a future in which this is the case for AI as well.

The development of AI certainly comes with relevant and real concerns that must be addressed – such as its controversial role in education, the potential job losses it might lead to, and its bias and inaccuracies. For every fear, however, there is also a ray of hope, and that is largely thanks to people and their ingenuity.

Looking at education, many educators around the world are worried about recent developments in AI. The frequently discussed ChatGPT – which is now on its fourth version – is a major red flag for many, causing concerns around plagiarism and creating fears that it will lead to the end of writing as people know it. This is one of the main factors that has increased the pessimistic reporting about AI that one so often sees in the media.

However, when one actually considers ChatGPT in its current state, it is safe to say that these fears are probably overblown. Can ChatGPT really replace the human mind, which is capable of so much that AI cannot replicate? As for educators, instead of assuming that all their students will want to cheat, they should instead consider the options for taking advantage of new tech to enhance the learning experience. Most people now know the tell-tale signs for identifying something that ChatGPT has written. Excessive use of numbered lists, repetitive language and poor comparison skills are just three ways to tell if a piece of writing is legitimate or if a bot is behind it. This author personally encourages the use of AI in the classes I teach. This is because it is better for students to understand what AI can do and how to use it as a tool in their learning instead of avoiding and fearing it, or being discouraged from using it no matter the circumstances.

Educators should therefore reframe the idea of ChatGPT in their minds, have open discussions with students about its uses, and help them understand that it is actually just another tool to help them learn more efficiently – and not a replacement for their own thoughts and words. Such frank discussions help students develop their critical thinking skills and start understanding their own influence on ChatGPT and other AI-powered tools.

By developing one’s understanding of AI’s actual capabilities, one can begin to understand its uses in everyday life. Some would have people believe that this means countless jobs will inevitably become obsolete, but that is not entirely true. Even if AI does replace some jobs, it will still need industry experts to guide it, meaning that entirely new jobs are being created at the same time as some older jobs are disappearing.

Adapting to AI is a new challenge for most industries, and it is certainly daunting at times. The reality, however, is that AI is not here to steal people’s jobs. If anything, it will change the nature of some jobs and may even improve them by making human workers more efficient and productive. If AI is to be a truly useful tool, it will still need humans. One should remember that humans working alongside AI and using it as a tool is key, because in most cases AI cannot do the job of a person by itself.

Is AI biased?

Why should one view AI as a tool and not a replacement? The main reason is because AI itself is still learning, and AI-powered tools such as ChatGPT do not understand bias. As a result, whenever ChatGPT is asked a question it will pull information from anywhere, and so it can easily repeat old biases. AI is learning from previous data, much of which is biased or out of date. Data about home ownership and mortgages, e.g., are often biased because non-white people in the United States could not get a mortgage until after the 1960s. The effect on data due to this lending discrimination is only now being fully understood.

AI is certainly biased at times, but that stems from human bias. Again, this just reinforces the need for humans to be in control of AI. AI is like a young child in that it is still absorbing what is happening around it. People must therefore not fear it, but instead guide it in the right direction.

For AI to be used as a tool, it must be treated as such. If one wanted to build a house, one would not expect one’s tools to be able to do the job alone – and AI must be viewed through a similar lens. By acknowledging this aspect of AI and taking control of humans’ role in its development, the world would be better placed to reap the benefits and quash the fears associated with AI. One should therefore not assume that all the doom and gloom one reads about AI is exactly as it seems. Instead, people should try experimenting with it and learning from it, and maybe soon they will realize that it was the best thing that could have happened to humanity.

Read the full article below:

Read the article
The European Business Review: Adapting to the Digital Age: Teaching Blockchain and Cloud Computing
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Nov 6, 2024 6 min read

Source:


By Lokesh Vij

Lokesh Vij is a Professor of BSc in Modern Computer Science & MSc in Applied Data Science & AI at Open Institute of Technology. With over 20 years of experience in cloud computing infrastructure, cybersecurity and cloud development, Professor Vij is an expert in all things related to data and modern computer science.

In today’s rapidly evolving technological landscape, the fields of blockchain and cloud computing are transforming industries, from finance to healthcare, and creating new opportunities for innovation. Integrating these technologies into education is not merely a trend but a necessity to equip students with the skills they need to thrive in the future workforce. Though both technologies are independently powerful, their potential for innovation and disruption is amplified when combined. This article explores the pressing questions surrounding the inclusion of blockchain and cloud computing in education, providing a comprehensive overview of their significance, benefits, and challenges.

The Technological Edge and Future Outlook

Cloud computing has revolutionized how businesses and individuals’ access and manage data and applications. Benefits like scalability, cost efficiency (including eliminating capital expenditure – CapEx), rapid innovation, and experimentation enable businesses to develop and deploy new applications and services quickly without the constraints of traditional on-premises infrastructure – thanks to managed services where cloud providers manage the operating system, runtime, and middleware, allowing businesses to focus on development and innovation. According to Statista, the cloud computing market is projected to reach a significant size of Euro 250 billion or even higher by 2028 (from Euro 110 billion in 2024), with a substantial Compound Annual Growth Rate (CAGR) of 22.78%. The widespread adoption of cloud computing by businesses of all sizes, coupled with the increasing demand for cloud-based services and applications, fuels the need for cloud computing professionals.

Blockchain, a distributed ledger technology, has paved the way by providing a secure, transparent, and tamper-proof way to record transactions (highly resistant to hacking and fraud). In 2021, European blockchain startups raised $1.5 billion in funding, indicating strong interest and growth potential. Reports suggest the European blockchain market could reach $39 billion by 2026, with a significant CAGR of over 47%. This growth is fueled by increasing adoption in sectors like finance, supply chain, and healthcare.

Addressing the Skills Gap

Reports from the World Economic Forum indicate that 85 million jobs may be displaced by a shift in the division of labor between humans and machines by 2025. However, 97 million new roles may emerge that are more adapted to the new division of labor between humans, machines, and algorithms, many of which will require proficiency in cloud computing and blockchain.

Furthermore, the World Economic Forum predicts that by 2027, 10% of the global GDP will be tokenized and stored on the blockchain. This massive shift means a surge in demand for blockchain professionals across various industries. Consider the implications of 10% of the global GDP being on the blockchain: it translates to a massive need for people who can build, secure, and manage these systems. We’re talking about potentially millions of jobs worldwide.

The European Blockchain Services Infrastructure (EBSI), an EU initiative, aims to deploy cross-border blockchain services across Europe, focusing on areas like digital identity, trusted data sharing, and diploma management. The EU’s MiCA (Crypto-Asset Regulation) regulation, expected to be fully implemented by 2025, will provide a clear legal framework for crypto-assets, fostering innovation and investment in the blockchain space. The projected growth and supportive regulatory environment point to a rising demand for blockchain professionals in Europe. Developing skills related to EBSI and its applications could be highly advantageous, given its potential impact on public sector blockchain adoption. Understanding the MiCA regulation will be crucial for blockchain roles related to crypto-assets and decentralized finance (DeFi).

Furthermore, European businesses are rapidly adopting digital technologies, with cloud computing as a core component of this transformation. GDPR (Data Protection Regulations) and other data protection laws push businesses to adopt secure and compliant cloud solutions. Many European countries invest heavily in cloud infrastructure and promote cloud adoption across various sectors. Artificial intelligence and machine learning will be deeply integrated into cloud platforms, enabling smarter automation, advanced analytics, and more efficient operations. This allows developers to focus on building applications without managing servers, leading to faster development cycles and increased scalability. Processing data closer to the source (like on devices or local servers) will become crucial for applications requiring real-time responses, such as IoT and autonomous vehicles.

The projected growth indicates a strong and continuous demand for blockchain and cloud professionals in Europe and worldwide. As we stand at the “crossroads of infinity,” there is a significant skill shortage, which will likely increase with the rapid adoption of these technologies. A 2023 study by SoftwareOne found that 95% of businesses globally face a cloud skills gap. Specific skills in high demand include cloud security, cloud-native development, and expertise in leading cloud platforms like AWS, Azure, and Google Cloud. The European Commission’s Digital Economy and Society Index (DESI) highlights a need for improved digital skills in areas like blockchain to support the EU’s digital transformation goals. A 2023 report by CasperLabs found that 90% of businesses in the US, UK, and China adopt blockchain, but knowledge gaps and interoperability challenges persist.

The Role of Educational Institutions

This surge in demand necessitates a corresponding increase in qualified individuals who can design, implement, and manage cloud-based and blockchain solutions. Educational institutions have a critical role to play in bridging this widening skills gap and ensuring a pipeline of talent ready to meet the demands of this burgeoning industry.

To effectively prepare the next generation of cloud computing and blockchain experts, educational institutions need to adopt a multi-pronged approach. This includes enhancing curricula with specialized programs, integrating cloud and blockchain concepts into existing courses, and providing hands-on experience with leading technology platforms.

Furthermore, investing in faculty development to ensure they possess up-to-date knowledge and expertise is crucial. Collaboration with industry partners through internships, co-teach programs, joint research projects, and mentorship programs can provide students with invaluable real-world experience and insights.

Beyond formal education, fostering a culture of lifelong learning is essential. Offering continuing education courses, boot camps, and online resources enables professionals to upskill or reskill and stay abreast of the latest advancements in cloud computing. Actively promoting awareness of career paths and opportunities in this field and facilitating connections with potential employers can empower students to thrive in the dynamic and evolving landscape of cloud computing and blockchain technologies.

By taking these steps, educational institutions can effectively prepare the young generation to fill the skills gap and thrive in the rapidly evolving world of cloud computing and blockchain.

Read the full article below:

Read the article