Combine mathematics with analytics, mix in programming skills, and add a dash of artificial intelligence, and you have the recipe for creating a data scientist. These professionals use complex technical skills to parse, analyze, and draw insights from complex datasets, enabling more accurate decision-making in the process.

As companies gather more data than ever before (both about their customers and themselves), these skills are in increasingly high demand. That’s demonstrated by data from the U.S. Bureau of Labor Statistics, which says that the number of data science jobs in the U.S. alone looks set to increase by 36% between 2021 and 2031.

That higher-than-average growth rate creates an opportunity for students, though grasping that opportunity requires a dedication to learning. This article explores the question of what is data science course material and highlights a selection of courses that set you on a data-propelled career path.

What to Expect From a Data Science Course

Answering the question of “what is data science course?” starts with examining the components of the typical course. Bear in mind that these components vary in nature and complexity depending on the specific course you take, though all are usually present.

Overview of Course Content

The content of a data science course is usually split into four core categories:

  • Statistics and Probability – Math underpins everything a data scientist does, as they use numbers to spot patterns and determine the likelihood of various potential outcomes. Most data science courses delve into statistics and probability for this reason, with more advanced courses often requiring a degree in a field related to these areas.
  • Programming – Whether it’s Python (the most popular data science programming language), R, or SQL, your course will teach you how to write in a language that machines understand.
  • Data Visualization and Analysis – Anybody can collect reams of data. It’s the ability to visualize that data (and draw insights from it) that sets data scientists apart from other professionals. A good course equips you with the ability to use visualization tools to shine a spotlight on what a dataset actually tells you.
  • Machine Learning and AI – The rise of machine learning transformed data science. Using algorithms created by data scientists, machines can analyze datasets presented to them and learn from the patterns to predict probabilities for different outcomes and even predict market trends. Your course will teach you how to create the algorithms that serve as a machine learning model’s “brain.”

Hands-On Projects and Real-World Applications

If you had the desire, you could read pages and pages on how to tune a car’s engine. But without practical and real-world wrench-in-hand experience working on an engine, you’ll never figure out how what you learn from books applies in the field.

The same line of thinking applies to data science, which is often so technically complex that it’s difficult to see how what you learn applies in the real world. A good data science course incorporates a real-world component through projects and exposure to faculty members who have direct experience in using the skills they teach.

Peer Collaboration and Networking

What is data science course for if not to learn how to become a data scientist? While learning the technical side is crucial, of course, a good course also puts you in contact with like-minded individuals who have the same (or similar) goals as you.

That contact helps you to build the collaborative skills you’ll need when you enter the workforce. But perhaps more importantly, it aids you in creating a network of peers who could lead you to job opportunities or work with you on entrepreneurial ventures.

Top Data Science Courses Available

With the components of a data science course established, you have a vital question to answer – what data science course should you take? The following are four suggestions (two online courses and two university courses) that give you a solid grounding in the subject.

Online Courses

Taking a data science course online gives you flexibility, though you may miss out on some of the collaborative and networking aspects that university-led courses provide.

Course 1 – What Is Data Science? (IBM via Coursera)

Coming with the stamp of approval from IBM, a leading name in the computer science field, this nine-hour course is suitable for beginners who want a self-paced learning approach. It’s part of a multi-part program (the IBM Data Science Professional Certificate) that’s designed to give you an industry-recognized qualification that could fast-track your entry into the field.

As for the course itself, it’s split into three parts, each containing multiple instructor-led videos and quizzes to test what you’ve learned. By the end, you’ll understand what data scientists do, build a basic understanding of various data science-related topics, and see how the profession relates to the modern business world. Granted, the course offers a surface-level understanding of the subject, with more complex topics examined in other classes. But it’s a superb tool for developing the foundation on which you can build with other courses.

Course 2 – Introduction to Data Science With Python (Harvard via edX)

Where IBM’s course equips you with general knowledge, Harvard’s online offering digs into the practical side of data science. Specifically, it focuses on using Python (and its many libraries) to solve data science problems drawn from real-world examples.

The course takes eight weeks, with study time between three and four hours per week. Ultimately, this class helps you build on your established programming skills and shows you how to apply them in a data science context.

As you may have guessed, that mention of building on existing skills means you’ll need a solid understanding of Python to participate in this free course. But assuming you have that, Harvard’s class is ideal for showing you just how flexible the language can be, especially when developing machine learning algorithms. Furthermore, simply having the word “Harvard” on your online certification adds credibility to your CV when you start applying for jobs.

University Programs

University programs demand a larger time (and monetary) commitment than purely online programs, though the upside is that you get a more prestigious qualification at the end. These two courses are ideal, with one even being a hybrid of online and university-level courses.

Course 1 – Master in Applied Data Science & AI (OPIT)

Let’s get the obvious out of the way first – you’ll need a BSc degree, or an equivalent, in a computer science or mathematical subject to take OPIT’s data science Master’s degree course.

Assuming you meet that prerequisite, this course comes in 18 and 12-month varieties, with the latter being a fast-tracked version that delivers the same content while asking you to dedicate more time to studying. It costs €6,500 to take, though early bird discounts are available, and an EU-accredited university delivers it.

The course eschews traditional exams by taking a progressive assessment approach to determine how well you’re absorbing the materials. It’s also focused on the practical side of things, with the application of data science in business problem-solving and communication being core modules.

Course 2 – MSc in Social Data Science (University of Oxford)

As the world’s leading university for seven consecutive years, according to Times Higher Education (THE) World University Rankings, the University of Oxford has outstanding credentials. And its MSc in Social Data Science is an interesting course to take because it specializes in a specific subject area – human behavior.

The degree stands on the precipice of an emerging field as it focuses on using data science to analyze, critique, and reevaluate existing social processes. It combines general machine learning models with more specialized data science tools, such as natural language processing and computer vision, to equip students with a high degree of technical knowledge.

That knowledge doesn’t come cheap, either in time or monetary commitment. The University of Oxford expects students to devote 40 hours per week to study, with overseas students having to pay £30,910 (approx. €35,795) to participate. While these investments are naturally intimidating, the university’s prestige makes the time and money you spend worthwhile when you start speaking to employers.

Factors to Consider When Choosing a Data Science Course

The four courses presented here each offer something different in terms of delivery and the expertise required of the student to participate. When choosing between them (and any other courses you find), you should consider the following questions:

  • Does the course content and curriculum align with your career goals?
  • Can you make time for the course within your schedule, and how much flexibility does it offer?
  • Do the instructors provide the expertise you need and teach in a style that suits your preferred way of learning?
  • Will you get an adequate return on your investment, both in terms of the prestige of the certification you receive and the knowledge you gain?
  • Have past (or current) students recommended the course as a good option for prospective data scientists?

The Benefits of Completing a Data Science Course

Given the technical nature of the subject, you may be asking yourself what is data science course content going to deliver in terms of benefits to your life. The answers are as follows:

  • Your skills improve your job prospects by putting you in pole position to enter a market that’s set for substantial growth over the next 10 years.
  • The problem-solving and analytical tools you gain are useful in the data science field and other career paths.
  • Any course you select puts you in contact with industry professionals who offer networking opportunities that could lead to a new job.
  • You get to learn about (and experiment with) cutting-edge tools and technologies that will become the standard for modern business, and more, in the coming years.

What Is Data Science Course – It’s Your Route Into a Great Career

Let’s conclude by reiterating something mentioned at the start of the article – the data science sector will grow by 36% over the next decade or so.

That growth alone demonstrates the importance of data science, as well as why choosing the right course is so critical to your future success. With the right course, you make yourself a desirable candidate to organizations that are quickly accepting that they need data scientists to help them make decisions for the future.

Related posts

Sage: The ethics of AI: how to ensure your firm is fair and transparent
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Mar 7, 2025 3 min read

Source:


By Chris Torney

Artificial intelligence (AI) and machine learning have the potential to offer significant benefits and opportunities to businesses, from greater efficiency and productivity to transformational insights into customer behaviour and business performance. But it is vital that firms take into account a number of ethical considerations when incorporating this technology into their business operations. 

The adoption of AI is still in its infancy and, in many countries, there are few clear rules governing how companies should utilise the technology. However, experts say that firms of all sizes, from small and medium-sized businesses (SMBs) to international corporations, need to ensure their implementation of AI-based solutions is as fair and transparent as possible. Failure to do so can harm relationships with customers and employees, and risks causing serious reputational damage as well as loss of trust.

What are the main ethical considerations around AI?

According to Pierluigi Casale, professor in AI at the Open Institute of Technology, the adoption of AI brings serious ethical considerations that have the potential to affect employees, customers and suppliers. “Fairness, transparency, privacy, accountability, and workforce impact are at the core of these challenges,” Casale explains. “Bias remains one of AI’s biggest risks: models trained on historical data can reinforce discrimination, and this can influence hiring, lending and decision-making.”

Part of the problem, he adds, is that many AI systems operate as ‘black boxes’, which makes their decision-making process hard to understand or interpret. “Without clear explanations, customers may struggle to trust AI-driven services; for example, employees may feel unfairly assessed when AI is used for performance reviews.”

Casale points out that data privacy is another major concern. “AI relies on vast datasets, increasing the risk of breaches or misuse,” he says. “All companies operating in Europe must comply with regulations such as GDPR and the AI Act, ensuring responsible data handling to protect customers and employees.”

A third significant ethical consideration is the potential impact of AI and automation on current workforces. Businesses may need to think about their responsibilities in terms of employees who are displaced by technology, for example by introducing training programmes that will help them make the transition into new roles.

Olivia Gambelin, an AI ethicist and the founder of advisory network Ethical Intelligence, says the AI-related ethical considerations are likely to be specific to each business and the way it plans to use the technology. “It really does depend on the context,” she explains. “You’re not going to find a magical checklist of five things to consider on Google: you actually have to do the work, to understand what you are building.”

This means business leaders need to work out how their organisation’s use of AI is going to impact the people – the customers and employees – that come into contact with it, Gambelin says. “Being an AI-enabled company means nothing if your employees are unhappy and fearful of their jobs, and being an AI-enabled service provider means nothing if it’s not actually connecting with your customers.”

Read the full article below:

Read the article
Reuters: EFG Watch: DeepSeek poses deep questions about how AI will develop
OPIT - Open Institute of Technology
OPIT - Open Institute of Technology
Feb 10, 2025 4 min read

Source:

  • Reuters, Published on February 10th, 2025.

By Mike Scott

Summary

  • DeepSeek challenges assumptions about AI market and raises new ESG and investment risks
  • Efficiency gains significant – similar results being achieved with less computing power
  • Disruption fuels doubts over Big Tech’s long-term AI leadership and market valuations
  • China’s lean AI model also casts doubt on costly U.S.-backed Stargate project
  • Analysts see DeepSeek as a counter to U.S. tariffs, intensifying geopolitical tensions

February 10 – The launch by Chinese company DeepSeek, opens new tab of its R1 reasoning model last month caused chaos in U.S. markets. At the same time, it shone a spotlight on a host of new risks and challenged market assumptions about how AI will develop.

The shock has since been overshadowed by President Trump’s tariff wars, opens new tab, but DeepSeek is set to have lasting and significant implications, observers say. It is also a timely reminder of why companies and investors need to consider ESG risks, and other factors such as geopolitics, in their investment strategies.

“The DeepSeek saga is a fascinating inflection point in AI’s trajectory, raising ESG questions that extend beyond energy and market concentration,” Peter Huang, co-founder of Openware AI, said in an emailed response to questions.

DeepSeek put the cat among the pigeons by announcing that it had developed its model for around $6 million, a thousandth of the cost of some other AI models, while also using far fewer chips and much less energy.

Camden Woollven, group head of AI product marketing at IT governance and compliance group GRC International, said in an email that “smaller companies and developers who couldn’t compete before can now get in the game …. It’s like we’re seeing a democratisation of AI development. And the efficiency gains are significant as they’re achieving similar results with much less computing power, which has huge implications for both costs and environmental impact.”

The impact on AI stocks and companies associated with the sector was severe. Chipmaker Nvidia lost almost $600 billion in market capitalisation after the DeepSeek announcement on fears that demand for its chips would be lower, but there was also a 20-30% drop in some energy stocks, said Stephen Deadman, UK associate partner at consultancy Sia.

As Reuters reported, power producers were among the biggest winners in the S&P 500 last year, buoyed by expectations of ballooning demand from data centres to scale artificial intelligence technologies, yet they saw the biggest-ever one-day drops after the DeepSeek announcement.

One reason for the massive sell-off was the timing – no-one was expecting such a breakthrough, nor for it to come from China. But DeepSeek also upended the prevailing narrative of how AI would develop, and who the winners would be.

Tom Vazdar, professor of cybersecurity and AI at Open Institute of Technology (OPIT), pointed out in an email that it called into question the premise behind the Stargate Project,, opens new tab a $500 billion joint venture by OpenAI, SoftBank and Oracle to build AI infrastructure in the U.S., which was announced with great fanfare by Donald Trump just days before DeepSeek’s announcement.

“Stargate has been premised on the notion that breakthroughs in AI require massive compute and expensive, proprietary infrastructure,” Vazdar said in an email.

There are also dangers in markets being dominated by such a small group of tech companies. As Abbie Llewellyn-Waters, Investment manager at Jupiter Asset Management, pointed out in a research note, the “Magnificent Seven” tech stocks had accounted for nearly 60% of the index’s gains over the previous two years. The group of mega-caps comprised more than a third of the S&P 500’s total value in December 2024.

Read the full article below:

Read the article